Advertisement

4d \( \mathcal{N}=1/2d \) Yang-Mills duality in holography

  • Martin Fluder
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We study the supergravity dual of four-dimensional \( \mathcal{N}=1 \) superconformal field theories arising from wrapping M5-branes on a Kähler two-cycle inside a Calabi-Yau threefold. We derive an effective three-dimensional theory living on the cobordism between the infrared and ultraviolet Riemann surfaces, describing the renormalization group flows between AdS7 and AdS5 as well as between different AdS5 fixed points. The realization of this system as an effective theory is convenient to make connections to known theories, and we show that upon imposing (physical) infrared boundary conditions, the effective three-dimensional theory further reduces to two-dimensional SU(2) Yang-Mills theory on the Riemann surface.

Keywords

AdS-CFT Correspondence M-Theory Renormalization Group Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  3. [3]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic Uniformization, Commun. Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Fluder, Kähler Uniformization from Holographic Renormalization Group Flows of M5-branes, arXiv:1710.09479 [INSPIRE].
  6. [6]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].ADSGoogle Scholar
  7. [7]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J.T. Liu and R. Minasian, Black holes and membranes in AdS 7, Phys. Lett. B 457 (1999) 39 [hep-th/9903269] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP 04 (2014) 036 [arXiv:1212.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A 308 (1982) 523 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  11. [11]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    I. Bah and B. Wecht, New N = 1 Superconformal Field Theories In Four Dimensions, JHEP 07 (2013) 107 [arXiv:1111.3402] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J.P. Gauntlett, Branes, calibrations and supergravity, in Strings and geometry. Proceedings, Summer School, Cambridge, U.K., March 24 – April 20, 2002, pp. 79–126, hep-th/0305074 [INSPIRE].
  16. [16]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear K K reduction of 11-D supergravity on AdS 7 × S 4 and selfduality in odd dimensions, Phys. Lett. B 469 (1999) 96 [hep-th/9905075] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS 7 × S 4 reduction and the origin of selfduality in odd dimensions, Nucl. Phys. B 581 (2000) 179 [hep-th/9911238] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged Maximally Extended Supergravity in Seven-dimensions, Phys. Lett. B 143 (1984) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Beasley and E. Witten, Non-Abelian localization for Chern-Simons theory, J. Diff. Geom. 70 (2005) 183 [hep-th/0503126] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo, Topological Strings, Two-Dimensional Yang-Mills Theory and Chern-Simons Theory on Torus Bundles, Adv. Theor. Math. Phys. 12 (2008) 981 [hep-th/0609129] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D. Gaiotto and J. Maldacena, The Gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    I. Bah, M. Gabella and N. Halmagyi, Punctures from probe M5-branes and \( \mathcal{N}=1 \) superconformal field theories, JHEP 07 (2014) 131 [arXiv:1312.6687] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    I. Bah, AdS5 solutions from M5-branes on Riemann surface and D6-branes sources, JHEP 09 (2015) 163 [arXiv:1501.06072] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations