Exotic massive 3D gravity

  • Mehmet Ozkan
  • Yi Pang
  • Paul K. TownsendEmail author
Open Access
Regular Article - Theoretical Physics


The linearized equations of “New Massive Gravity” propagate a parity doublet of massive spin-2 modes in 3D Minkowski spacetime, but a different non-linear extension is made possible by “third-way” consistency. There is a “Chern-Simons-like” action, as for other 3D massive gravity models, but the new theory is “exotic”: its action is parity odd. This “Exotic Massive Gravity” is the next-to-simplest case in an infinite sequence of third-way consistent 3D gravity theories, the simplest being the “Minimal Massive Gravity” alternative to “Topologically Massive Gravity”.


Chern-Simons Theories Classical Theories of Gravity Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Dyson, Is a graviton detectable?, Int. J. Mod. Phys. A 28 (2013) 1330041 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.S. Goldhaber and M.M. Nieto, Photon and Graviton Mass Limits, Rev. Mod. Phys. 82 (2010) 939 [arXiv:0809.1003] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of massive gravities, Mod. Phys. Lett. A 30 (2015) 1540006 [arXiv:1410.2289] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett. 120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Gravitons in Flatland, Springer Proc. Phys. 137 (2011) 291 [arXiv:1007.4561] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].
  13. [13]
    E.A. Bergshoeff, J. Rosseel and P.K. Townsend, Gravity and the Spin-2 Planar Schrödinger Equation, Phys. Rev. Lett. 120 (2018) 141601 [arXiv:1712.10071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, On Higher Derivatives in 3D Gravity and Higher Spin Gauge Theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O. Hohm, A. Routh, P.K. Townsend and B. Zhang, On the Hamiltonian form of 3D massive gravity, Phys. Rev. D 86 (2012) 084035 [arXiv:1208.0038] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E.A. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Chern-Simons-like Gravity Theories, Lect. Notes Phys. 892 (2015) 181 [arXiv:1402.1688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    W. Merbis, Chern-Simons-like Theories of Gravity, Ph.D. Thesis, University of Groningen (2014). [arXiv:1411.6888] [INSPIRE].
  18. [18]
    A. Achúcarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Achúcarro, Three-dimensional theories of Anti-de Sitter supergravity associated to the supergroups, OSp(p/2; R) × OSp(q/2; R)”, MSc Thesis, University of the Basque Country, Bilbao (1986).Google Scholar
  20. [20]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  21. [21]
    J.H. Horne and E. Witten, Conformal Gravity in Three-dimensions as a Gauge Theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Minimal Massive 3D Gravity, Class. Quant. Grav. 31 (2014) 145008 [arXiv:1404.2867] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A.S. Arvanitakis and P.K. Townsend, Minimal Massive 3D Gravity Unitarity Redux, Class. Quant. Grav. 32 (2015) 085003 [arXiv:1411.1970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-Dreibein Gravity: A Two-Frame-Field Model of 3D Massive Gravity, Phys. Rev. Lett. 111 (2013) 111102 [Erratum ibid. 111 (2013) 259902] [arXiv:1307.2774] [INSPIRE].
  25. [25]
    E.A. Bergshoeff, A.F. Goya, W. Merbis and J. Rosseel, Logarithmic AdS Waves and Zwei-Dreibein Gravity, JHEP 04 (2014) 012 [arXiv:1401.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.K. Townsend and B. Zhang, Thermodynamics ofExoticBañados-Teitelboim-Zanelli Black Holes, Phys. Rev. Lett. 110 (2013) 241302 [arXiv:1302.3874] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Bergshoeff, W. Merbis, A.J. Routh and P.K. Townsend, The Third Way to 3D Gravity, Int. J. Mod. Phys. D 24 (2015) 1544015 [arXiv:1506.05949] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    A.S. Arvanitakis, A.J. Routh and P.K. Townsend, Matter coupling in 3Dminimal massive gravity, Class. Quant. Grav. 31 (2014) 235012 [arXiv:1407.1264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holographylock, stock and barrel, Phys. Rev. D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H. Afshar, A. Bagchi, S. Detournay, D. Grumiller, S. Prohazka and M. Riegler, Holographic Chern-Simons Theories, Lect. Notes Phys. 892 (2015) 311 [arXiv:1404.1919] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A.S. Arvanitakis, A. Sevrin and P.K. Townsend, Yang-Mills as massive Chern-Simons theory: a third way to three-dimensional gauge theories, Phys. Rev. Lett. 114 (2015) 181603 [arXiv:1501.07548] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    P.A.M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950) 129 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Hajihashemi and A. Shirzad, Hamiltonian structure of three-dimensional gravity in Vielbein formalism, Phys. Rev. D 97 (2018) 024022 [arXiv:1704.00610] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, On Critical Massive (Super)Gravity in adS3, J. Phys. Conf. Ser. 314 (2011) 012009 [arXiv:1011.1153] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    H.R. Afshar, E.A. Bergshoeff and W. Merbis, Extended massive gravity in three dimensions, JHEP 08 (2014) 115 [arXiv:1405.6213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  37. [37]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsIstanbul Technical UniversityMaslakTurkey
  2. 2.Mathematical InstituteUniversity of OxfordOxfordU.K.
  3. 3.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.

Personalised recommendations