Renormalization group properties in the conformal sector: towards perturbatively renormalizable quantum gravity

  • Tim R. MorrisEmail author
Open Access
Regular Article - Theoretical Physics


The Wilsonian renormalization group (RG) requires Euclidean signature. The conformal factor of the metric then has a wrong-sign kinetic term, which has a profound effect on its RG properties. Generically for the conformal sector, complete flows exist only in the reverse direction (i.e. from the infrared to the ultraviolet). The Gaussian fixed point supports infinite sequences of composite eigenoperators of increasing infrared relevancy (increasingly negative mass dimension), which are orthonormal and complete for bare interactions that are square integrable under the appropriate measure. These eigenoperators are non-perturbative in ℏ and evanescent. For ℝ4 spacetime, each renormalized physical operator exists but only has support at vanishing field amplitude. In the generic case of infinitely many non-vanishing couplings, if a complete RG flow exists, it is characterised in the infrared by a scale Λp > 0, beyond which the field amplitude is exponentially suppressed. On other spacetimes, of length scale L, the flow ceases to exist once a certain universal measure of inhomogeneity exceeds O(1) + 2πL2Λ p 2 . Importantly for cosmology, the minimum size of the universe is thus tied to the degree of inhomogeneity, with space-times of vanishing size being required to be almost homogeneous. We initiate a study of this exotic quantum field theory at the interacting level, and discuss what the full theory of quantum gravity should look like, one which must thus be perturbatively renormalizable in Newton’s constant but non-perturbative in ℏ.


Models of Quantum Gravity Renormalization Group Renormalization Regularization and Renormalons 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor. A20 (1974) 69 [INSPIRE].
  2. [2]
    M.H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett. B 160 (1985) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys. B 378 (1992) 309 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S. Weinberg, Ultraviolet Divergences In Quantum Theories Of Gravitation, in General Relativity, S.W. Hawking and W. Israel eds., Cambridge University Press (1980), pp. 790-831.Google Scholar
  6. [6]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395 [hep-th/9802039] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T.R. Morris, On the fixed point structure of scalar fields, Phys. Rev. Lett. 77 (1996) 1658 [hep-th/9601128] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T.R. Morris, Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group, Nucl. Phys. B 495 (1997) 477 [hep-th/9612117] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Hamzaan Bridle and T.R. Morris, Fate of nonpolynomial interactions in scalar field theory, Phys. Rev. D 94 (2016) 065040 [arXiv:1605.06075] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J.A. Dietz, T.R. Morris and Z.H. Slade, Fixed point structure of the conformal factor field in quantum gravity, Phys. Rev. D 94 (2016) 124014 [arXiv:1605.07636] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    A. Bonanno and F. Guarnieri, Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity, Phys. Rev. D 86 (2012) 105027 [arXiv:1206.6531] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C.G. Bollini and J.J. Giambiagi, Evanescent couplings and compensation of adler anomaly, Acta Phys. Austriaca 38 (1973) 211 [INSPIRE].Google Scholar
  16. [16]
    T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].
  17. [17]
    J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T.R. Morris and Z.H. Slade, Solutions to the reconstruction problem in asymptotic safety, JHEP 11 (2015) 094 [arXiv:1507.08657] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.F. Nicoll and T.S. Chang, An Exact One Particle Irreducible Renormalization Group Generator for Critical Phenomena, Phys. Lett. A 62 (1977) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Bonini, M. D’Attanasio and G. Marchesini, Perturbative renormalization and infrared finiteness in the Wilson renormalization group: The Massless scalar case, Nucl. Phys. B 409 (1993) 441 [hep-th/9301114] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Keller, C. Kopper and M. Salmhofer, Perturbative renormalization and effective Lagrangians in ϕ 4 in four-dimensions, Helv. Phys. Acta 65 (1992) 32 [INSPIRE].MathSciNetGoogle Scholar
  23. [23]
    K. Halpern and K. Huang, Fixed point structure of scalar fields, Phys. Rev. Lett. 74 (1995) 3526 [hep-th/9406199] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu.S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].
  26. [26]
    G. ’t Hooft, Can We Make Sense Out of Quantum Chromodynamics?, Subnucl. Ser. 15 (1979) 943 [INSPIRE].
  27. [27]
    R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].ADSGoogle Scholar
  28. [28]
    N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    I.S. Gradshteyn and I.M. Ryzhik, Tables of integrals, series and products, 4th edition, Academic Press Inc., New York (1980).zbMATHGoogle Scholar
  30. [30]
    S. Arnone, Y.A. Kubyshin, T.R. Morris and J.F. Tighe, Gauge invariant regularization via SU(N |N ), Int. J. Mod. Phys. A 17 (2002) 2283 [hep-th/0106258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    M.P. Kellett and T.R. Morris, Renormalization group properties of the conformal mode of a torus, Class. Quant. Grav. 35 (2018) 175002 [arXiv:1803.00859] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Hollands and R.M. Wald, An Alternative to inflation, Gen. Rel. Grav. 34 (2002) 2043 [gr-qc/0205058] [INSPIRE].
  33. [33]
    L. Kofman, A.D. Linde and V.F. Mukhanov, Inflationary theory and alternative cosmology, JHEP 10 (2002) 057 [hep-th/0206088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    S. Hollands and R.M. Wald, Comment on inflation and alternative cosmology, hep-th/0210001 [INSPIRE].
  35. [35]
    S.M. Carroll and H. Tam, Unitary Evolution and Cosmological Fine-Tuning, arXiv:1007.1417 [INSPIRE].
  36. [36]
    P. Hasenfratz and H. Leutwyler, Goldstone Boson Related Finite Size Effects in Field Theory and Critical Phenomena With O(N ) Symmetry, Nucl. Phys. B 343 (1990) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Kikkawa and M. Yamasaki, Casimir Effects in Superstring Theories, Phys. Lett. B 149 (1984) 357 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Sakai and I. Senda, Vacuum Energies of String Compactified on Torus, Prog. Theor. Phys. 75 (1986) 692 [Erratum ibid. 77 (1987) 773] [INSPIRE].
  40. [40]
    J. Feldbrugge, J.-L. Lehners and N. Turok, No rescue for the no boundary proposal: Pointers to the future of quantum cosmology, Phys. Rev. D 97 (2018) 023509 [arXiv:1708.05104] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S.N. Gupta, Gravitation and Electromagnetism, Phys. Rev. 96 (1954) 1683 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R.H. Kraichnan, Special-Relativistic Derivation of Generally Covariant Gravitation Theory, Phys. Rev. 98 (1955) 1118 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    R.P. Feynman, Feynman lectures on gravitation, (1996) [INSPIRE].
  44. [44]
    S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    V.I. Ogievetsky and I.V. Polubarinov, Interacting field of spin 2 and the einstein equations, Annals Phys. 35 (1965) 167.ADSCrossRefGoogle Scholar
  46. [46]
    W. Wyss, Zur Unizität der Gravitationstheorie, Helv. Phys. Acta 38 (1965) 469.zbMATHGoogle Scholar
  47. [47]
    S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].
  48. [48]
    D.G. Boulware and S. Deser, Classical General Relativity Derived from Quantum Gravity, Annals Phys. 89 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    J. Fang and C. Fronsdal, Deformation of Gauge Groups. Gravitation, J. Math. Phys. 20 (1979) 2264 [INSPIRE].
  50. [50]
    R.M. Wald, Spin-2 Fields and General Covariance, Phys. Rev. D 33 (1986) 3613 [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    P.J. Mohr, D.B. Newell and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys. 88 (2016) 035009 [arXiv:1507.07956] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T.R. Morris and A.W.H. Preston, Manifestly diffeomorphism invariant classical Exact Renormalization Group, JHEP 06 (2016) 012 [arXiv:1602.08993] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    M.C. Bergere and Y.-M.P. Lam, Equivalence Theorem and Faddeev-Popov Ghosts, Phys. Rev. D 13 (1976) 3247 [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Itzykson and J.B. Zuber, Quantum Field Theory, International Series In Pure and Applied Physics, McGraw-Hill, New York (1980).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.STAG Research Centre & Department of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations