Advertisement

Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range

  • Tarak Thakore
  • Moon Moon Devi
  • Sanjib Kumar Agarwalla
  • Amol Dighe
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We perform a detailed analysis for the prospects of detecting active-sterile oscillations involving a light sterile neutrino, over a large Δm 41 2 range of 10−5 eV2 to 102 eV2, using 10 years of atmospheric neutrino data expected from the proposed 50 kt magnetized ICAL detector at the INO. This detector can observe the atmospheric νμ and \( {\overline{\nu}}_{\mu } \) separately over a wide range of energies and baselines, making it sensitive to the magnitude and sign of Δm 41 2 over a large range. If there is no light sterile neutrino, ICAL can place competitive upper limit on |Uμ4|2 ≲ 0.02 at 90% C.L. for Δm 41 2 in the range (0.5−5)×10−3 eV2. For the same |Δm 41 2 | range, ICAL would be able to determine its sign, exploiting the Earth’s matter effect in μ and μ+ events separately if there is indeed a light sterile neutrino in Nature. This would help identify the neutrino mass ordering in the four-neutrino mixing scenario.

Keywords

Neutrino Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].
  2. [2]
    A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].
  3. [3]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  5. [5]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Kaether et al., Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].
  7. [7]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  8. [8]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  9. [9]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  10. [10]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  11. [11]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [arXiv:1606.07538] [INSPIRE].
  12. [12]
    SNO collaboration, B. Aharmim et al., Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  13. [13]
    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].
  14. [14]
    Borexino collaboration, M. Agostini et al., First simultaneous precision spectroscopy of pp, 7 Be and pep solar neutrinos with Borexino Phase-II, arXiv:1707.09279 [INSPIRE].
  15. [15]
    Super-Kamiokande collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126] [INSPIRE].
  16. [16]
    IceCube collaboration, M.G. Aartsen et al., Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].
  17. [17]
    KamLAND collaboration, A. Gando et al., Reactor on-off antineutrino measurement with KamLAND, Phys. Rev. D 88 (2013) 033001 [arXiv:1303.4667] [INSPIRE].
  18. [18]
    Daya Bay collaboration, F.P. An et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].
  19. [19]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  20. [20]
    A. Minotti, Latest results from Double CHOOZ, Phys. Part. Nucl. 48 (2017) 47 [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
  22. [22]
    RENO collaboration, M.Y. Pac, Recent results from RENO, PoS(NuFact2017)038 [arXiv:1801.04049] [INSPIRE].
  23. [23]
    K2K collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE].
  24. [24]
    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  25. [25]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  26. [26]
    T2K collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  27. [27]
    T2K collaboration, K. Abe et al., Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 × 1021 protons on target, Phys. Rev. D 96 (2017) 011102 [arXiv:1704.06409] [INSPIRE].
  28. [28]
    NOvA collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ 23 in NOvA, Phys. Rev. Lett. 118 (2017) 151802 [arXiv:1701.05891] [INSPIRE].
  29. [29]
    NOvA collaboration, P. Adamson et al., Constraints on oscillation parameters from ν e appearance and ν μ disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  30. [30]
    I. Esteban et al., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Capozzi et al., Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].
  32. [32]
    P.F. de Salas et al., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
  33. [33]
    K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
  34. [34]
    G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, First constraints on the complete neutrino mixing matrix with a sterile neutrino, Phys. Rev. Lett. 117 (2016) 221801 [arXiv:1607.00011] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated global 3 + 1 analysis of short-baseline neutrino oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].
  36. [36]
    LSND collaboration, C. Athanassopoulos et al., Candidate events in a search for anti-muon-neutrino to anti-electron-neutrino oscillations, Phys. Rev. Lett. 75 (1995) 2650 [nucl-ex/9504002] [INSPIRE].
  37. [37]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  38. [38]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].
  39. [39]
    T.A. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
  40. [40]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  41. [41]
    NEOS collaboration, Y. Ko et al., Sterile neutrino search at the NEOS experiment, Phys. Rev. Lett. 118 (2017) 121802 [arXiv:1610.05134] [INSPIRE].
  42. [42]
    M. Danilov, Search for sterile neutrinos at the DANSS experiment, talk given at the DANSS experiment at the Solvay Workshop: Beyond the Standard model with Neutrinos and Nuclear Physics, November 29-December 1, Brussels, Belgium (2017).Google Scholar
  43. [43]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Model-independent \( {\overline{\nu}}_e \) short-baseline oscillations from reactor spectral ratios, Phys. Lett. B 782 (2018) 13 [arXiv:1801.06467] [INSPIRE].
  44. [44]
    I.E. Stockdale et al., Limits on muon neutrino oscillations in the mass range 55 eV 2 < Δm 2 < 800 eV 2, Phys. Rev. Lett. 52 (1984) 1384 [INSPIRE].
  45. [45]
    F. Dydak et al., A search for muon-neutrino oscillations in the Δm 2 Range 0.3 eV2 to 90 eV2, Phys. Lett. B 134 (1984) 281.Google Scholar
  46. [46]
    SciBooNE, MiniBooNE collaboration, K.B.M. Mahn et al., Dual baseline search for muon neutrino disappearance at 0.5 eV 2 < Δm 2 < 40 eV 2, Phys. Rev. D 85 (2012) 032007 [arXiv:1106.5685] [INSPIRE].
  47. [47]
    SciBooNE, MiniBooNE collaboration, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1 eV2 < Δm 2 < 100 eV 2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].
  48. [48]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrinos mixing with muon neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  49. [49]
    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].
  50. [50]
    IceCube collaboration, M.G. Aartsen et al., Searches for sterile neutrinos with the IceCube detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE].
  51. [51]
    F. Capozzi, C. Giunti, M. Laveder and A. Palazzo, Joint short- and long-baseline constraints on light sterile neutrinos, Phys. Rev. D 95 (2017) 033006 [arXiv:1612.07764] [INSPIRE].
  52. [52]
    M. Dentler et al., Sterile neutrinos or flux uncertainties?Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].
  53. [53]
    M. Dentler et al., Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos, arXiv:1803.10661 [INSPIRE].
  54. [54]
    B.K. Cogswell et al., Neutrino oscillations: ILL experiment revisited, arXiv:1802.07763 [INSPIRE].
  55. [55]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  56. [56]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].
  57. [57]
    C. Giunti, Light Sterile Neutrinos: Status and Perspectives, Nucl. Phys. B 908 (2016) 336 [arXiv:1512.04758] [INSPIRE].
  58. [58]
    L. Stanco, Search for sterile neutrinos at long and short baselines, in the proceedings of Prospects in Neutrino Physics (NuPhys2015), December 16-18, London, U.K. (2015), arXiv:1604.06769 [INSPIRE].
  59. [59]
    A. Fava, Experimental investigation of the thriving mystery of sterile neutrinos, Rev. Phys. 1 (2016) 52.CrossRefGoogle Scholar
  60. [60]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].
  61. [61]
    S.K. Agarwalla et al., Discovery potential of T2K and NOvA in the presence of a light sterile neutrino, JHEP 02 (2016) 111 [arXiv:1601.05995] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Ghosh, S. Gupta, Z.M. Matthews, P. Sharma and A.G. Williams, Study of parameter degeneracy and hierarchy sensitivity of NOνA in presence of sterile neutrino, Phys. Rev. D 96 (2017) 075018 [arXiv:1704.04771] [INSPIRE].
  63. [63]
    R. Gandhi, B. Kayser, M. Masud and S. Prakash, The impact of sterile neutrinos on CP measurements at long baselines, JHEP 11 (2015) 039 [arXiv:1508.06275] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Octant of θ 23 in danger with a light sterile neutrino, Phys. Rev. Lett. 118 (2017) 031804 [arXiv:1605.04299] [INSPIRE].
  65. [65]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Degeneracy between θ 23 octant and neutrino non-standard interactions at DUNE, Phys. Lett. B 762 (2016) 64 [arXiv:1607.01745] [INSPIRE].
  66. [66]
    S. Choubey, D. Dutta and D. Pramanik, Imprints of a light sterile neutrino at DUNE, T2HK and T2HKK, Phys. Rev. D 96 (2017) 056026 [arXiv:1704.07269] [INSPIRE].
  67. [67]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Signatures of a light sterile neutrino in T2HK, JHEP 04 (2018) 091 [arXiv:1801.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Razzaque and A.Yu. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    A. Esmaili, F. Halzen and O.L.G. Peres, Constraining sterile neutrinos with AMANDA and IceCube atmospheric neutrino data, JCAP 11 (2012) 041 [arXiv:1206.6903] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Esmaili and A.Yu. Smirnov, Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data, JHEP 12 (2013) 014 [arXiv:1307.6824] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Blennow et al., IceCube bounds on sterile neutrinos above 10 eV, arXiv:1803.02362 [INSPIRE].
  72. [72]
    S. Razzaque and A.Yu. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].
  73. [73]
    A. Esmaili, F. Halzen and O.L.G. Peres, Exploring ν τ s mixing with cascade events in DeepCore, JCAP 07 (2013) 048 [arXiv:1303.3294] [INSPIRE].
  74. [74]
    S. Choubey, N.P. Harries and G.G. Ross, Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Phys. Rev. D 76 (2007) 073013 [hep-ph/0703092] [INSPIRE].
  75. [75]
    A. Esmaili, O.L.G. Peres and P.D. Serpico, Impact of sterile neutrinos on the early time flux from a galactic supernova, Phys. Rev. D 90 (2014) 033013 [arXiv:1402.1453] [INSPIRE].
  76. [76]
    M. Archidiacono, E. Giusarma, S. Hannestad and O. Mena, Cosmic dark radiation and neutrinos, Adv. High Energy Phys. 2013 (2013) 191047 [arXiv:1307.0637] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    J. Lesgourgues and S. Pastor, Neutrino cosmology and Planck, New J. Phys. 16 (2014) 065002 [arXiv:1404.1740] [INSPIRE].
  78. [78]
    P.C. de Holanda and A.Yu. Smirnov, Homestake result, sterile neutrinos and low-energy solar neutrino experiments, Phys. Rev. D 69 (2004) 113002 [hep-ph/0307266] [INSPIRE].
  79. [79]
    P.C. de Holanda and A.Yu. Smirnov, Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, Phys. Rev. D 83 (2011) 113011 [arXiv:1012.5627] [INSPIRE].
  80. [80]
    P.S. Bhupal Dev and A. Pilaftsis, Light and superlight sterile neutrinos in the minimal radiative inverse seesaw model, Phys. Rev. D 87 (2013) 053007 [arXiv:1212.3808] [INSPIRE].
  81. [81]
    W. Liao, Y. Luo and X.-H. Wu, Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino, JHEP 06 (2014) 069 [arXiv:1403.2559] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    P.C. Divari and J.D. Vergados, Neutrino oscillations in the presence of super-light sterile neutrinos, Int. J. Mod. Phys. A 31 (2016) 1650123 [arXiv:1602.08690] [INSPIRE].
  83. [83]
    A. Palazzo, Constraints on very light sterile neutrinos from θ 13 -sensitive reactor experiments, JHEP 10 (2013) 172 [arXiv:1308.5880] [INSPIRE].
  84. [84]
    A. Esmaili et al., Probing light sterile neutrinos in medium baseline reactor experiments, Phys. Rev. D 88 (2013) 073012 [arXiv:1308.6218] [INSPIRE].
  85. [85]
    I. Girardi et al., Constraining sterile neutrinos using reactor neutrino experiments, JHEP 08 (2014) 057 [arXiv:1405.6540] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    Daya Bay collaboration, F.P. An et al., Search for a light sterile neutrino at Daya Bay, Phys. Rev. Lett. 113 (2014) 141802 [arXiv:1407.7259] [INSPIRE].
  87. [87]
    Daya Bay collaboration, F.P. An et al., Improved search for a light sterile neutrino with the full configuration of the Daya Bay experiment, Phys. Rev. Lett. 117 (2016) 151802 [arXiv:1607.01174] [INSPIRE].
  88. [88]
    D.O. Caldwell, G.M. Fuller and Y.-Z. Qian, Sterile neutrinos and supernova nucleosynthesis, Phys. Rev. D 61 (2000) 123005 [astro-ph/9910175] [INSPIRE].
  89. [89]
    I. Tamborra, G.G. Raffelt, L. Hudepohl and H.-T. Janka, Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows, JCAP 01 (2012) 013 [arXiv:1110.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    M.-R. Wu et al., Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis, Phys. Rev. D 89 (2014) 061303 [arXiv:1305.2382] [INSPIRE].
  91. [91]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The \( \nu \) MSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
  92. [92]
    T. Asaka and M. Shaposhnikov, The \( \nu \) MSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  93. [93]
    A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M. Drewes et al., A white paper on keV sterile neutrino dark matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].Google Scholar
  95. [95]
    ICAL collaboration, S. Ahmed et al., Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].
  96. [96]
    India-based Neutrino Observatory (INO), http://www.ino.tifr.res.in/ino/.
  97. [97]
    A. Chatterjee et al., A simulations study of the muon response of the iron calorimeter detector at the India-based Neutrino Observatory, 2014 JINST 9 P07001 [arXiv:1405.7243] [INSPIRE].
  98. [98]
    M.M. Devi, A. Ghosh, D. Kaur, L.S. Mohan, S. Choubey, A. Dighe et al., Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory, 2013 JINST 8 P11003 [arXiv:1304.5115] [INSPIRE].
  99. [99]
    L.S. Mohan et al., Simulation studies of hadron energy resolution as a function of iron plate thickness at INO-ICAL, 2014 JINST 9 T09003 [arXiv:1401.2779] [INSPIRE].
  100. [100]
    A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M.M. Devi et al., Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information, JHEP 10 (2014) 189 [arXiv:1406.3689] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    A. Ajmi et al., Improving the hierarchy sensitivity of ICAL using neural network, J. Phys. Conf. Ser. 888 (2017) 012151 [arXiv:1510.02350] [INSPIRE].
  103. [103]
    T. Thakore et al., The reach of INO for atmospheric neutrino oscillation parameters, JHEP 05 (2013) 058 [arXiv:1303.2534] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    D. Kaur, M. Naimuddin and S. Kumar, The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters, Eur. Phys. J. C 75 (2015) 156 [arXiv:1409.2231] [INSPIRE].
  105. [105]
    L.S. Mohan and D. Indumathi, Pinning down neutrino oscillation parameters in the 2 sector with a magnetised atmospheric neutrino detector: a new study, Eur. Phys. J. C 77 (2017) 54 [arXiv:1605.04185] [INSPIRE].
  106. [106]
    S.P. Behera et al., Search for the sterile neutrino mixing with the ICAL detector at INO, Eur. Phys. J. C 77 (2017) 307 [arXiv:1605.08607] [INSPIRE].
  107. [107]
    S. Goswami, Accelerator, reactor, solar and atmospheric neutrino oscillation: Beyond three generations, Phys. Rev. D 55 (1997) 2931 [hep-ph/9507212] [INSPIRE].
  108. [108]
    N. Okada and O. Yasuda, A Sterile neutrino scenario constrained by experiments and cosmology, Int. J. Mod. Phys. A 12 (1997) 3669 [hep-ph/9606411] [INSPIRE].
  109. [109]
    S.M. Bilenky, C. Giunti and W. Grimus, Neutrino mass spectrum from the results of neutrino oscillation experiments, Eur. Phys. J. C 1 (1998) 247 [hep-ph/9607372] [INSPIRE].
  110. [110]
    S.M. Bilenky et al., Four neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry, Phys. Rev. D 60 (1999) 073007 [hep-ph/9903454] [INSPIRE].
  111. [111]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [INSPIRE].
  112. [112]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  113. [113]
    MINOS, Daya Bay collaboration, P. Adamson et al., Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay and Bugey-3 experiments, Phys. Rev. Lett. 117 (2016) 151801 [arXiv:1607.01177] [INSPIRE].
  114. [114]
    IceCube collaboration, M.G. Aartsen et al., Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
  115. [115]
    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].
  116. [116]
    NOvA collaboration, P. Adamson et al., Search for active-sterile neutrino mixing using neutral-current interactions in NOvA, Phys. Rev. D 96 (2017) 072006 [arXiv:1706.04592] [INSPIRE].
  117. [117]
    V.D. Barger et al., Neutrino mixing, CP/T violation and textures in four neutrino models, Phys. Rev. D 59 (1999) 113010 [hep-ph/9901388] [INSPIRE].
  118. [118]
    B. Kayser, Neutrino mass, mixing and flavor change, hep-ph/0211134 [INSPIRE].
  119. [119]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  120. [120]
    P. Huber et al., New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  121. [121]
    A.M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter. 25 (1981) 297.ADSCrossRefGoogle Scholar
  122. [122]
    D. Casper, The Nuance neutrino physics simulation and the future, Nucl. Phys. Proc. Suppl. 112 (2002) 161 [hep-ph/0208030] [INSPIRE].
  123. [123]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
  124. [124]
    G.L. Fogli et al., Solar neutrino oscillation parameters after first KamLAND results, Phys. Rev. D 67 (2003) 073002 [hep-ph/0212127] [INSPIRE].
  125. [125]
    M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].
  126. [126]
    E.K. Akhmedov et al., Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].
  127. [127]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, submitted to Phys. Rev. Lett. (2017), [arXiv:1710.06488 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Tarak Thakore
    • 1
    • 2
  • Moon Moon Devi
    • 3
  • Sanjib Kumar Agarwalla
    • 4
    • 5
    • 6
  • Amol Dighe
    • 7
  1. 1.Louisiana State UniversityBaton RougeU.S.A.
  2. 2.Instituto de Fìsica Corpuscular, CSIC — Universitat de ValènciaPaternaSpain
  3. 3.Department of PhysicsTezpur UniversityAssamIndia
  4. 4.Institute of Physics, Sachivalaya Marg, Sainik School PostBhubaneswarIndia
  5. 5.Homi Bhabha National Institute, Anushakti NagarMumbaiIndia
  6. 6.International Centre for Theoretical PhysicsTriesteItaly
  7. 7.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations