Advertisement

Exotic branes in Exceptional Field Theory: the SL(5) duality group

  • Ilya Bakhmatov
  • David S. Berman
  • Axel Kleinschmidt
  • Edvard T. Musaev
  • Ray Otsuki
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We study how exotic branes, i.e. branes whose tensions are proportional to g s −  α , with α > 2, are realised in Exceptional Field Theory (EFT). The generalised torsion of the Weitzenböck connection of the SL(5) EFT which, in the language of gauged supergravity describes the embedding tensor, is shown to classify the exotic branes whose magnetic fluxes can fit into four internal dimensions. By analysing the weight diagrams of the corresponding representations of SL(5) we determine the U-duality orbits relating geometric and non-geometric fluxes. As a further application of the formalism we consider the Kaluza-Klein monopole of 11D supergravity and rotate it into the exotic 6(3,1)-brane.

Keywords

M-Theory p-branes String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Cremmer and B. Julia, The N = 8 Supergravity Theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [INSPIRE].
  2. [2]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualisation of dualities II: twisted self-duality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].
  4. [4]
    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].
  5. [5]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].
  6. [6]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
  7. [7]
    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].
  9. [9]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  17. [17]
    G. Bossard, M. Cederwall, A. Kleinschmidt, J. Palmkvist and H. Samtleben, Generalized diffeomorphisms for E 9, Phys. Rev. D 96 (2017) 106022 [arXiv:1708.08936] [INSPIRE].
  18. [18]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: E d(d) × ℝ+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].
  19. [19]
    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  20. [20]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  21. [21]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  22. [22]
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7) Exceptional Field Theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].
  23. [23]
    E.T. Musaev and H. Samtleben, Fermions and supersymmetry in E 6(6) exceptional field theory, JHEP 03 (2015) 027 [arXiv:1412.7286] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    E.T. Musaev, Exceptional Field Theory for E 6(6) supergravity, TSPU Bulletin 12 (2014) 198 [arXiv:1503.08397] [INSPIRE].
  25. [25]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].
  26. [26]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2) × ℝ+ exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].
  28. [28]
    D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    E.T. Musaev, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions, JHEP 05 (2013) 161 [arXiv:1301.0467] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    D.S. Berman and K. Lee, Supersymmetry for Gauged Double Field Theory and Generalised Scherk-Schwarz Reductions, Nucl. Phys. B 881 (2014) 369 [arXiv:1305.2747] [INSPIRE].
  31. [31]
    W.H. Baron, Gaugings from E 7(7) extended geometries, Phys. Rev. D 91 (2015) 024008 [arXiv:1404.7750] [INSPIRE].
  32. [32]
    D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The O D,D geometry of string theory, Int. J. Mod. Phys. A 29 (2014) 1450080 [arXiv:1303.6727] [INSPIRE].
  33. [33]
    G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    R. Blumenhagen, A. Font and E. Plauschinn, Relating double field theory to the scalar potential of N = 2 gauged supergravity, JHEP 12 (2015) 122 [arXiv:1507.08059] [INSPIRE].
  38. [38]
    N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].
  40. [40]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].
  42. [42]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A. Chatzistavrakidis and F.F. Gautason, U-dual branes and mixed symmetry tensor fields, Fortsch. Phys. 62 (2014) 743 [arXiv:1404.7635] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Jensen, The KK-Monopole/NS5-Brane in Doubled Geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    T. Kimura and S. Sasaki, Gauged Linear σ-model for Exotic Five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].
  48. [48]
    T. Kimura and S. Sasaki, Worldsheet instanton corrections to 522 -brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].
  49. [49]
    T. Kimura and S. Sasaki, Worldsheet Description of Exotic Five-brane with Two Gauged Isometries, JHEP 03 (2014) 128 [arXiv:1310.6163] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D. Lüst, E. Plauschinn and V. Vall Camell, Unwinding strings in semi-flatland, JHEP 07 (2017) 027 [arXiv:1706.00835] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    D.S. Berman and F.J. Rudolph, Branes are Waves and Monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    E.T. Musaev, Exotic branes in Double Field Theory, Eurphys. J. Web Conf. 125 (2016) 05017 [INSPIRE].
  54. [54]
    B. Wecht, Lectures on Nongeometric Flux Compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    D.S. Berman and F.J. Rudolph, Strings, Branes and the Self-dual Solutions of Exceptional Field Theory, JHEP 05 (2015) 130 [arXiv:1412.2768] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].
  58. [58]
    F. Riccioni and P.C. West, E 11 -extended spacetime and gauged supergravities, JHEP 02 (2008) 039 [arXiv:0712.1795] [INSPIRE].
  59. [59]
    P. West, Generalised space-time and duality, Phys. Lett. B 693 (2010) 373 [arXiv:1006.0893] [INSPIRE].
  60. [60]
    P. West, Generalised geometry, eleven dimensions and E 11, JHEP 02 (2012) 018 [arXiv:1111.1642] [INSPIRE].
  61. [61]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [INSPIRE].
  64. [64]
    K. Lee, S.-J. Rey and Y. Sakatani, Effective action for non-geometric fluxes duality covariant actions, JHEP 07 (2017) 075 [arXiv:1612.08738] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].
  66. [66]
    B. de Wit and H. Nicolai, The Parallelizing S 7 Torsion in Gauged N = 8 Supergravity, Nucl. Phys. B 231 (1984) 506 [INSPIRE].
  67. [67]
    B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].
  69. [69]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].
  70. [70]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  71. [71]
    D.M. Lombardo, F. Riccioni and S. Risoli, P fluxes and exotic branes, JHEP 12 (2016) 114 [arXiv:1610.07975] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    P.C. West, The IIA, IIB and eleven-dimensional theories and their common E 11 origin, Nucl. Phys. B 693 (2004) 76 [hep-th/0402140] [INSPIRE].
  74. [74]
    P.P. Cook and P.C. West, \( \mathcal{G} \) +++ and brane solutions, Nucl. Phys. B 705 (2005) 111 [hep-th/0405149] [INSPIRE].
  75. [75]
    F. Englert, L. Houart, A. Kleinschmidt, H. Nicolai and N. Tabti, An E 9 multiplet of BPS states, JHEP 05 (2007) 065 [hep-th/0703285] [INSPIRE].
  76. [76]
    T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].
  77. [77]
    F. Englert, L. Houart, A. Taormina and P.C. West, The Symmetry of M theories, JHEP 09 (2003) 020 [hep-th/0304206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    F. Englert and L. Houart, \( \mathcal{G} \) +++ invariant formulation of gravity and M theories: Exact BPS solutions, JHEP 01 (2004) 002 [hep-th/0311255] [INSPIRE].
  79. [79]
    P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].
  80. [80]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].
  81. [81]
    A. Kleinschmidt and P.C. West, Representations of \( \mathcal{G} \) +++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].
  82. [82]
    G. Bossard, A. Kleinschmidt, J. Palmkvist, C.N. Pope and E. Sezgin, Beyond E 11, JHEP 05 (2017) 020 [arXiv:1703.01305] [INSPIRE].
  83. [83]
    E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric Domain Walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].
  84. [84]
    T. Kimura and M. Yata, Gauged Linear σ-model with F-term for A-type ALE Space, Prog. Theor. Exp. Phys. 2014 (2014) 073B01 [arXiv:1402.5580] [INSPIRE].
  85. [85]
    T. Kimura and M. Yata, T-duality Transformation of Gauged Linear σ-model with F-term, Nucl. Phys. B 887 (2014) 136 [arXiv:1406.0087] [INSPIRE].
  86. [86]
    C.D.A. Blair, Conserved Currents of Double Field Theory, JHEP 04 (2016) 180 [arXiv:1507.07541] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  87. [87]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    C.M. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [INSPIRE].
  89. [89]
    O. Hohm and B. Zwiebach, Large Gauge Transformations in Double Field Theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  91. [91]
    D.S. Berman, M. Cederwall and M.J. Perry, Global aspects of double geometry, JHEP 09 (2014) 066 [arXiv:1401.1311] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  92. [92]
    G. Papadopoulos, C-spaces, generalized geometry and double field theory, JHEP 09 (2015) 029 [arXiv:1412.1146] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  93. [93]
    F. Hassler, The Topology of Double Field Theory, JHEP 04 (2018) 128 [arXiv:1611.07978] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    P.S. Howe and G. Papadopoulos, Patching DFT, T-duality and Gerbes, JHEP 04 (2017) 074 [arXiv:1612.07968] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    P. du Bosque, F. Hassler and D. Lüst, Generalized parallelizable spaces from exceptional field theory, JHEP 01 (2018) 117 [arXiv:1705.09304] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  96. [96]
    P. Bouwknegt, J. Evslin and V. Mathai, On the topology and H-flux of T-dual manifolds, Phys. Rev. Lett. 92 (2004) 181601 [hep-th/0312052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  97. [97]
    D. Lüst, E. Malek and M. Syvari, Locally non-geometric fluxes and missing momenta in M-theory, JHEP 01 (2018) 050 [arXiv:1710.05919] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Asia Pacific Center for Theoretical PhysicsPostechPohangKorea
  2. 2.Institute of PhysicsKazan Federal UniversityKazanRussia
  3. 3.Queen Mary University of London, Centre for Research in String TheorySchool of Physics and AstronomyLondonEngland
  4. 4.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany

Personalised recommendations