Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers

  • Rodrigo AlonsoEmail author
  • Diego Blas
  • Peter Wolf
Open Access
Regular Article - Experimental Physics


Particle dark matter could have a mass anywhere from that of ultralight candidates, mχ ∼ 10−21 eV, to scales well above the GeV. Conventional laboratory searches are sensitive to a range of masses close to the weak scale, while new techniques are required to explore candidates outside this realm. In particular lighter candidates are difficult to detect due to their small momentum. Here we study two experimental set-ups which do not require transfer of momentum to detect dark matter: atomic clocks and co-magnetometers. These experiments probe dark matter that couples to the spin of matter via the very precise measurement of the energy difference between atomic states of different angular momenta. This coupling is possible (even natural) in most dark matter models, and we translate the current experimental sensitivity into implications for different dark matter models. It is found that the constraints from current atomic clocks and co-magnetometers can be competitive in the mass range mχ ∼ 10−21−103 eV, depending on the model. We also comment on the (negligible) effect of different astrophysical neutrino backgrounds.


Dark matter Dark Matter and Double Beta Decay (experiments) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Gelmini and P. Gondolo, DM production mechanisms, in Particle dark matter: observations, models and searches, G. Bertone ed., Cambridge University Press, Cambridge U.K. (2010), arXiv:1009.3690 [INSPIRE].
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  3. [3]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].
  4. [4]
    A.K. Drukier, K. Freese and D.N. Spergel, Detecting cold dark matter candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].
  5. [5]
    X. Ji, Astroparticle physics: dark matter remains elusive, Nature 542 (2017) 172.Google Scholar
  6. [6]
    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  7. [7]
    G.B. Gelmini, The Hunt for Dark Matter, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), June 2-27, Boulder, U.S.A. (2015), arXiv:1502.01320, [INSPIRE].
  8. [8]
    M. Lisanti, Lectures on Dark Matter Physics, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1-26, Boulder, U.S.A. (2017), arXiv:1603.03797 [INSPIRE].
  9. [9]
    R. Essig et al., Working group report: new light weakly coupled particles, in the proceedings of the Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1311.0029 [INSPIRE].
  10. [10]
    J. Alexander et al., Dark sectors 2016 workshop: community report, arXiv:1608.08632 [INSPIRE].
  11. [11]
    S. Knapen, T. Lin and K.M. Zurek, Light dark matter: models and constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].
  12. [12]
    J. Baur et al., Lyman-α forests cool warm dark matter, JCAP 08 (2016) 012 [arXiv:1512.01981] [INSPIRE].
  13. [13]
    L. Randall, J. Scholtz and J. Unwin, Cores in dwarf galaxies from Fermi repulsion, Mon. Not. Roy. Astron. Soc. 467 (2017) 1515 [arXiv:1611.04590] [INSPIRE].
  14. [14]
    S. Tremaine and J.E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].
  15. [15]
    A. Boyarsky, O. Ruchayskiy and D. Iakubovskyi, A lower bound on the mass of dark matter particles, JCAP 03 (2009) 005 [arXiv:0808.3902] [INSPIRE].
  16. [16]
    C. Di Paolo, F. Nesti and F.L. Villante, Phase space mass bound for fermionic dark matter from dwarf spheroidal galaxies, Mon. Not. Roy. Astron. Soc. 475 (2018) 5385 [arXiv:1704.06644] [INSPIRE].
  17. [17]
    T. Kobayashi et al., Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe, Phys. Rev. D 96 (2017) 123514 [arXiv:1708.00015] [INSPIRE].
  18. [18]
    N. Bar, D. Blas, K. Blum and S. Sibiryakov, Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation, Phys. Rev. D 98 (2018) 083027 [arXiv:1805.00122] [INSPIRE].
  19. [19]
    D.J.E. Marsh, Axion cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
  20. [20]
    L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
  21. [21]
    C. Kouvaris and J. Pradler, Probing sub-GeV Dark Matter with conventional detectors, Phys. Rev. Lett. 118 (2017) 031803 [arXiv:1607.01789] [INSPIRE].
  22. [22]
    Y. Hochberg, T. Lin and K.M. Zurek, Detecting ultralight bosonic dark matter via absorption in superconductors, Phys. Rev. D 94 (2016) 015019 [arXiv:1604.06800] [INSPIRE].
  23. [23]
    R. Essig, T. Volansky and T.-T. Yu, New constraints and prospects for sub-GeV dark matter scattering off electrons in Xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].
  24. [24]
    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
  25. [25]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor probes of light dark matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].
  26. [26]
    R. Essig et al., Direct detection of sub-GeV dark matter with semiconductor targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].
  27. [27]
    S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation effects in dark matter-electron scattering experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].
  28. [28]
    R. Essig et al., First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].
  29. [29]
    S. Knapen, T. Lin and K.M. Zurek, Light dark matter in superfluid helium: detection with multi-excitation production, Phys. Rev. D 95 (2017) 056019 [arXiv:1611.06228] [INSPIRE].
  30. [30]
    Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting superlight dark matter with Fermi-degenerate materials, JHEP 08 (2016) 057 [arXiv:1512.04533] [INSPIRE].
  31. [31]
    Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].
  32. [32]
    K. Schutz and K.M. Zurek, Detectability of light dark matter with superfluid Helium, Phys. Rev. Lett. 117 (2016) 121302 [arXiv:1604.08206] [INSPIRE].
  33. [33]
    R. Essig, J. Mardon, O. Slone and T. Volansky, Detection of sub-GeV dark matter and solar neutrinos via chemical-bond breaking, Phys. Rev. D 95 (2017) 056011 [arXiv:1608.02940] [INSPIRE].
  34. [34]
    P. Brax, S. Fichet and G. Pignol, Bounding quantum dark forces, Phys. Rev. D 97 (2018) 115034 [arXiv:1710.00850] [INSPIRE].
  35. [35]
    S. Fichet, Quantum forces from dark matter and where to find them, Phys. Rev. Lett. 120 (2018) 131801 [arXiv:1705.10331] [INSPIRE].
  36. [36]
    R. Budnik, O. Chesnovsky, O. Slone and T. Volansky, Direct detection of light dark matter and solar neutrinos via color center production in crystals, Phys. Lett. B 782 (2018) 242 [arXiv:1705.03016] [INSPIRE].
  37. [37]
    C.J. Riedel, Direct detection of classically undetectable dark matter through quantum decoherence, Phys. Rev. D 88 (2013) 116005 [arXiv:1212.3061] [INSPIRE].
  38. [38]
    J. Bateman, I. McHardy, A. Merle, T.R. Morris and H. Ulbricht, On the existence of low-mass dark matter and its direct detection, Sci. Rep. 5 (2015) 8058 [arXiv:1405.5536] [INSPIRE].
  39. [39]
    C.J. Riedel and I. Yavin, Decoherence as a way to measure extremely soft collisions with dark matter, Phys. Rev. D 96 (2017) 023007 [arXiv:1609.04145] [INSPIRE].
  40. [40]
    A. Derevianko and M. Pospelov, Hunting for topological dark matter with atomic clocks, Nature Phys. 10 (2014) 933 [arXiv:1311.1244] [INSPIRE].
  41. [41]
    A. Arvanitaki, J. Huang and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, Phys. Rev. D 91 (2015) 015015 [arXiv:1405.2925] [INSPIRE].
  42. [42]
    Y.V. Stadnik and V.V. Flambaum, Manifestations of dark matter and variations of fundamental constants in atoms and astrophysical phenomena, (2015), arXiv:1509.00966 [INSPIRE].
  43. [43]
    A. Hees et al., Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons, Phys. Rev. Lett. 117 (2016) 061301 [arXiv:1604.08514] [INSPIRE].
  44. [44]
    K. Van Tilburg, N. Leefer, L. Bougas and D. Budker, Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett. 115 (2015) 011802 [arXiv:1503.06886] [INSPIRE].
  45. [45]
    Q. Yang and H. Di, Sub-MeV bosonic dark matter, misalignment mechanism and galactic dark matter halo luminosities, Phys. Rev. D 95 (2017) 075032 [arXiv:1610.08378] [INSPIRE].
  46. [46]
    P.S.B. Dev, M. Lindner and S. Ohmer, Gravitational waves as a new probe of Bose-Einstein condensate Dark Matter, Phys. Lett. B 773 (2017) 219 [arXiv:1609.03939] [INSPIRE].
  47. [47]
    A. Garcon et al., The Cosmic Axion Spin Precession Experiment (CASPEr): a dark-matter search with nuclear magnetic resonance, arXiv:1707.05312 [INSPIRE].
  48. [48]
    D. Blas, D.L. Nacir and S. Sibiryakov, Ultralight dark matter resonates with binary pulsars, Phys. Rev. Lett. 118 (2017) 261102 [arXiv:1612.06789] [INSPIRE].
  49. [49]
    C. Delaunay, R. Ozeri, G. Perez and Y. Soreq, Probing atomic Higgs-like forces at the precision frontier, Phys. Rev. D 96 (2017) 093001 [arXiv:1601.05087] [INSPIRE].
  50. [50]
    P. Wcislo et al., Searching for dark matter with optical atomic clocks, arXiv:1605.05763 [INSPIRE].
  51. [51]
    P. Wolf, R. Alonso and D. Blas, Scattering of light dark matter in atomic clocks, Phys. Rev. D 99 (2019) 095019 [arXiv:1810.01632] [INSPIRE].
  52. [52]
    J.M. Brown, S.J. Smullin, T.W. Kornack and M.V. Romalis, New limit on Lorentz and CPT-violating neutron spin interactions, Phys. Rev. Lett. 105 (2010) 151604 [arXiv:1006.5425] [INSPIRE].
  53. [53]
    F. Allmendinger et al., New limit on Lorentz-invariance and CPT-violating neutron spin interactions using a free-spin-precession 3 He- 129 Xe comagnetometer, Phys. Rev. Lett. 112 (2014) 110801 [arXiv:1312.3225] [INSPIRE].
  54. [54]
    P.W. Graham et al., Spin precession experiments for light axionic dark matter, Phys. Rev. D 97 (2018) 055006 [arXiv:1709.07852] [INSPIRE].
  55. [55]
    Y.V. Stadnik, Manifestations of dark matter and variations of the fundamental constants of nature in atoms and astrophysical phenomena, Ph.D. thesis, University of New South Wales, Sydeny, Australia (2017).Google Scholar
  56. [56]
    J.K. Becker, High-energy neutrinos in the context of multimessenger physics, Phys. Rept. 458 (2008) 173 [arXiv:0710.1557] [INSPIRE].
  57. [57]
    J.A. Formaggio and G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales, Rev. Mod. Phys. 84 (2012) 1307 [arXiv:1305.7513] [INSPIRE].
  58. [58]
    A. Ringwald, Prospects for the direct detection of the cosmic neutrino background, Nucl. Phys. A 827 (2009) 501C [arXiv:0901.1529] [INSPIRE].
  59. [59]
    PTOLEMY collaboration, PTOLEMY: a proposal for thermal relic detection of massive neutrinos and directional detection of Mev dark matter, arXiv:1808.01892 [INSPIRE].
  60. [60]
    F. Bishara, J. Brod, B. Grinstein and J. Zupan, DirectDM: a tool for dark matter direct detection, arXiv:1708.02678 [INSPIRE].
  61. [61]
    J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].
  62. [62]
    J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].
  63. [63]
    J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].
  64. [64]
    J. Vanier and C. Audoin, The quantum physics of atomic frequency standards: vols. I and II, CRC Press, U.S.A. (1989).Google Scholar
  65. [65]
    N.J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments, Atom. Data Nucl. Data Tabl. 90 (2005) 75.Google Scholar
  66. [66]
    M. Goldberger and K. Watson, Collision theory, Dover books on physics, Dover Publications, U.S.A. (2004).Google Scholar
  67. [67]
    Y.V. Stadnik and V.V. Flambaum, Nuclear spin-dependent interactions: Searches for WIMP, Axion and Topological Defect Dark Matter and Tests of Fundamental Symmetries, Eur. Phys. J. C 75 (2015) 110 [arXiv:1408.2184] [INSPIRE].
  68. [68]
    J. Brown, A new limit on Lorentz- and CPT-violating neutron spin interactions using a K- 3 He comagnetometer, Ph.D. Thesis, Princeton University, Princeton, U.S.A. (2011).Google Scholar
  69. [69]
    S.S. Chakrabarty et al., Gravitational self-interactions of a degenerate quantum scalar field, Phys. Rev. D 97 (2018) 043531 [arXiv:1710.02195] [INSPIRE].
  70. [70]
    M.P. Hertzberg, Quantum and classical behavior in interacting bosonic systems, JCAP 11 (2016) 037 [arXiv:1609.01342] [INSPIRE].
  71. [71]
    G. Dvali and S. Zell, Classicality and Quantum Break-Time for Cosmic Axions, JCAP 07 (2018) 064 [arXiv:1710.00835] [INSPIRE].
  72. [72]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127.Google Scholar
  73. [73]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133.Google Scholar
  74. [74]
    A.E. Nelson and J. Scholtz, Dark light, dark matter and the misalignment mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].
  75. [75]
    B. Li, T. Rindler-Daller and P.R. Shapiro, Cosmological constraints on Bose-Einstein-condensed scalar field dark matter, Phys. Rev. D 89 (2014) 083536 [arXiv:1310.6061] [INSPIRE].
  76. [76]
    P.W. Graham et al., Dark matter direct detection with accelerometers, Phys. Rev. D 93 (2016) 075029 [arXiv:1512.06165] [INSPIRE].
  77. [77]
    P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].
  78. [78]
    P.W. Graham, J. Mardon and S. Rajendran, Vector dark matter from inflationary fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].
  79. [79]
    P. Sikivie and Q. Yang, Bose-Einstein condensation of dark matter axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].
  80. [80]
    A.H. Guth, M.P. Hertzberg and C. Prescod-WEinstein, Do dark matter axions form a condensate with long-range correlation?, Phys. Rev. D 92 (2015) 103513 [arXiv:1412.5930] [INSPIRE].
  81. [81]
    H.-Y. Schive et al., Understanding the core-halo relation of quantum wave dark matter from 3D simulations, Phys. Rev. Lett. 113 (2014) 261302 [arXiv:1407.7762] [INSPIRE].
  82. [82]
    B. Schwabe, J.C. Niemeyer and J.F. Engels, Simulations of solitonic core mergers in ultralight axion dark matter cosmologies, Phys. Rev. D 94 (2016) 043513 [arXiv:1606.05151] [INSPIRE].
  83. [83]
    D.G. Levkov, A.G. Panin and I.I. Tkachev, Gravitational Bose-Einstein condensation in the kinetic regime, Phys. Rev. Lett. 121 (2018) 151301 [arXiv:1804.05857] [INSPIRE].
  84. [84]
    J.Y. Widdicombe, T. Helfer, D.J.E. Marsh and E.A. Lim, Formation of Relativistic Axion Stars, JCAP 10 (2018) 005 [arXiv:1806.09367] [INSPIRE].
  85. [85]
    A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Resonant absorption of bosonic dark matter in molecules, Phys. Rev. X 8 (2018) 041001 [arXiv:1709.05354] [INSPIRE].
  86. [86]
    J.W. Foster, N.L. Rodd and B.R. Safdi, Revealing the dark matter halo with axion direct detection, Phys. Rev. D 97 (2018) 123006 [arXiv:1711.10489] [INSPIRE].
  87. [87]
    J. Guéna et al., Progress in atomic fountains at LNE-SYRTE, IEEE Trans. Ultrason. Ferr. Freq. Control 59 (2012) 391 [arXiv:1204.3621].
  88. [88]
    K. Gibble, Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions, Phys. Rev. Lett. 110 (2013) 180802 [arXiv:1304.3486].
  89. [89]
    A.D. Ludlow et al., Optical atomic clocks, Rev. Mod. Phys. 87 (2015) 637 [arXiv:1407.3493].
  90. [90]
    S. Weinberg, Lectures on quantum mechanics, Cambridge University Press, Cambridge U.K. (2013).Google Scholar
  91. [91]
    J. Guéna, M. Abgrall, A. Clairon and S. Bize, Contributing to TAI with a secondary representation of the SI second, Metrologia 51 (2014) 108 [arXiv:1401.7976].
  92. [92]
    A.L. Erickcek, P.J. Steinhardt, D. McCammon and P.C. McGuire, Constraints on the interactions between dark matter and baryons from the X-ray quantum calorimetry experiment, Phys. Rev. D 76 (2007) 042007 [arXiv:0704.0794] [INSPIRE].
  93. [93]
    B.J. Kavanagh, R. Catena and C. Kouvaris, Signatures of Earth-scattering in the direct detection of dark matter, JCAP 01 (2017) 012 [arXiv:1611.05453] [INSPIRE].
  94. [94]
    T. Emken and C. Kouvaris, DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter, JCAP 10 (2017) 031 [arXiv:1706.02249] [INSPIRE].
  95. [95]
    P. Laurent, D. Massonnet, L. Cacciapuoti and C. Salomon, The aces/pharao space mission, Compt. Rend. Phys. 16 (2015) 540.Google Scholar
  96. [96]
    L. Liu et al., Tests of cold atom clock in orbit, arXiv:1709.03256.
  97. [97]
    C. Gemmel et al., Limit on Lorentz and CPT violation of the bound Neutron Using a Free Precession 3 He/ 129 Xe co-magnetometer, Phys. Rev. D 82 (2010) 111901 [arXiv:1011.2143] [INSPIRE].
  98. [98]
    M.S. Safronova et al., Search for new physics with atoms and molecules, Rev. Mod. Phys. 90 (2018) 025008 [arXiv:1710.01833] [INSPIRE].
  99. [99]
    W.A. Terrano, E.G. Adelberger, J.G. Lee and B.R. Heckel, Short-range spin-dependent interactions of electrons: a probe for exotic pseudo-Goldstone bosons, Phys. Rev. Lett. 115 (2015) 201801 [arXiv:1508.02463] [INSPIRE].
  100. [100]
    G. Vasilakis, J.M. Brown, T.W. Kornack and M.V. Romalis, Limits on new long range nuclear spin-dependent forces set with a K-He-3 co-magnetometer, Phys. Rev. Lett. 103 (2009) 261801 [arXiv:0809.4700] [INSPIRE].
  101. [101]
    G. Raffelt, Limits on a CP-violating scalar axion-nucleon interaction, Phys. Rev. D 86 (2012) 015001 [arXiv:1205.1776] [INSPIRE].
  102. [102]
    C. Abel et al., Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields, Phys. Rev. X 7 (2017) 041034 [arXiv:1708.06367] [INSPIRE].
  103. [103]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
  104. [104]
    J. Pollack, D.N. Spergel and P.J. Steinhardt, Supermassive black holes from ultra-strongly self-interacting dark matter, Astrophys. J. 804 (2015) 131 [arXiv:1501.00017] [INSPIRE].
  105. [105]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  106. [106]
    G.G. Raffelt, Stars as laboratories for fundamental physics, Chicago University Press, Chicago U.S.A. (1996).Google Scholar
  107. [107]
    G.G. Raffelt, Particle physics from stars, Ann. Rev. Nucl. Part. Sci. 49 (1999) 163 [hep-ph/9903472] [INSPIRE].
  108. [108]
    R. Ejnisman and N.P. Bigelow, Is it possible to do experimental cosmology using cold atoms?, Braz. J. Phys. 28 (1998) 72.Google Scholar
  109. [109]
    A.G. Cocco, G. Mangano and M. Messina, Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei, JCAP 06 (2007) 015 [hep-ph/0703075] [INSPIRE].
  110. [110]
    L. Stodolsky, Speculations on detection of the neutrino sea, Phys. Rev. Lett. 34 (1975) 110 [Erratum ibid. 34 (1975) 508] [INSPIRE].
  111. [111]
    P. Langacker, J.P. Leveille and J. Sheiman, On the detection of cosmological neutrinos by coherent scattering, Phys. Rev. D 27 (1983) 1228 [INSPIRE].
  112. [112]
    A. Ringwald and Y.Y.Y. Wong, Gravitational clustering of relic neutrinos and implications for their detection, JCAP 12 (2004) 005 [hep-ph/0408241] [INSPIRE].
  113. [113]
    V. Domcke and M. Spinrath, Detection prospects for the Cosmic Neutrino Background using laser interferometers, JCAP 06 (2017) 055 [arXiv:1703.08629] [INSPIRE].
  114. [114]
    E. Akhmedov, G. Arcadi, M. Lindner and S. Vogl, Coherent scattering and macroscopic coherence: implications for neutrino, dark matter and axion detection, JHEP 10 (2018) 045 [arXiv:1806.10962] [INSPIRE].
  115. [115]
    D. Green and S. Rajendran, The cosmology of sub-MeV dark matter, JHEP 10 (2017) 013 [arXiv:1701.08750] [INSPIRE].
  116. [116]
    V.A. Kostelecky and C.D. Lane, Constraints on Lorentz violation from clock comparison experiments, Phys. Rev. D 60 (1999) 116010 [hep-ph/9908504] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  2. 2.Theoretical Particle Physics and Cosmology Group, Department of PhysicsKing’s College LondonLondonU.K.
  3. 3.SYRTE, Observatoire de Paris, Université PSLCNRS, Sorbonne Université, LNEParisFrance

Personalised recommendations