Advertisement

Gravitational production of superheavy dark matter and associated cosmological signatures

  • Lingfeng Li
  • Tomohiro Nakama
  • Chon Man Sou
  • Yi WangEmail author
  • Siyi Zhou
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We study the gravitational production of super-Hubble-mass dark matter in the very early universe. We first review the simplest scenario where dark matter is produced mainly during slow roll inflation. Then we move on to consider the cases where dark matter is produced during the transition period between inflation and the subsequent cosmological evolution. The limits of smooth and sudden transitions are studied, respectively. The relic abundances and the cosmological collider signals are calculated.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  2. [2]
    L.H. Ford, Gravitational particle creation and inflation, Phys. Rev. D 35 (1987) 2955 [INSPIRE].
  3. [3]
    M. Garny, M. Sandora and M.S. Sloth, Planckian interacting massive particles as dark matter, Phys. Rev. Lett. 116 (2016) 101302 [arXiv:1511.03278] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, Theory and phenomenology of Planckian interacting massive particles as dark matter, JCAP 02 (2018) 027 [arXiv:1709.09688] [INSPIRE].
  5. [5]
    S. Hashiba and J. Yokoyama, Gravitational reheating through conformally coupled superheavy scalar particles, JCAP 01 (2019) 028 [arXiv:1809.05410] [INSPIRE].
  6. [6]
    J. Haro, W. Yang and S. Pan, Reheating in quintessential inflation via gravitational production of heavy massive particles: a detailed analysis, JCAP 01 (2019) 023 [arXiv:1811.07371] [INSPIRE].
  7. [7]
    S. Hashiba and J. Yokoyama, Gravitational particle creation for dark matter and reheating, Phys. Rev. D 99 (2019) 043008 [arXiv:1812.10032] [INSPIRE].
  8. [8]
    E.W. Kolb, D.J.H. Chung and A. Riotto, WIMPzillas!, AIP Conf. Proc. 484 (1999) 91 [hep-ph/9810361] [INSPIRE].
  9. [9]
    E.W. Kolb, A.A. Starobinsky and I.I. Tkachev, Trans-Planckian WIMPzillas, JCAP 07 (2007) 005 [hep-th/0702143] [INSPIRE].
  10. [10]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].
  11. [11]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
  12. [12]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1999) 023501 [hep-ph/9802238] [INSPIRE].
  13. [13]
    V. Kuzmin and I. Tkachev, Ultrahigh-energy cosmic rays, superheavy long living particles and matter creation after inflation, JETP Lett. 68 (1998) 271 [Pisma Zh. Eksp. Teor. Fiz. 68 (1998) 255] [hep-ph/9802304] [INSPIRE].
  14. [14]
    D.J.H. Chung, E.W. Kolb, A. Riotto and I.I. Tkachev, Probing Planckian physics: resonant production of particles during inflation and features in the primordial power spectrum, Phys. Rev. D 62 (2000) 043508 [hep-ph/9910437] [INSPIRE].
  15. [15]
    V.A. Kuzmin and I.I. Tkachev, Ultrahigh-energy cosmic rays and inflation relics, Phys. Rept. 320 (1999) 199 [hep-ph/9903542] [INSPIRE].
  16. [16]
    D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev. D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
  17. [17]
    L.V. Delacretaz, V. Gorbenko and L. Senatore, The supersymmetric effective field theory of inflation, JHEP 03 (2017) 063 [arXiv:1610.04227] [INSPIRE].
  18. [18]
    S. Chang, C. Corianò and A.E. Faraggi, New dark matter candidates motivated from superstring derived unification, Phys. Lett. B 397 (1997) 76 [hep-ph/9603272] [INSPIRE].
  19. [19]
    S. Chang, C. Corianò and A.E. Faraggi, Stable superstring relics, Nucl. Phys. B 477 (1996) 65 [hep-ph/9605325] [INSPIRE].
  20. [20]
    A.E. Faraggi, K.A. Olive and M. Pospelov, Probing the desert with ultraenergetic neutrinos from the sun, Astropart. Phys. 13 (2000) 31 [hep-ph/9906345] [INSPIRE].
  21. [21]
    C. Corianò, A.E. Faraggi and M. Plümacher, Stable superstring relics and ultrahigh-energy cosmic rays, Nucl. Phys. B 614 (2001) 233 [hep-ph/0107053] [INSPIRE].
  22. [22]
    S. Kumar and R. Sundrum, Seeing higher-dimensional grand unification in primordial non-gaussianities, JHEP 04 (2019) 120 [arXiv:1811.11200] [INSPIRE].
  23. [23]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].
  24. [24]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
  25. [25]
    B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys. 78 (2006) 537 [astro-ph/0507632] [INSPIRE].
  26. [26]
    D. Boyanovsky, H.J. de Vega and R. Holman, Erice lectures on inflationary reheating, in Current topics in astrofundamental physics. Proceedings, International School of AstrophysicsD. Chalonge, 5th course, Erice, Italy, 7–15 September 1996, pg. 183 [hep-ph/9701304] [INSPIRE].
  27. [27]
    R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in inflationary cosmology: theory and applications, Ann. Rev. Nucl. Part. Sci. 60 (2010) 27 [arXiv:1001.2600] [INSPIRE].
  28. [28]
    A.V. Frolov, Non-linear dynamics and primordial curvature perturbations from preheating, Class. Quant. Grav. 27 (2010) 124006 [arXiv:1004.3559] [INSPIRE].
  29. [29]
    M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative dynamics of reheating after inflation: a review, Int. J. Mod. Phys. D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE].
  30. [30]
    Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter, JHEP 09 (2018) 135 [arXiv:1804.07471] [INSPIRE].
  31. [31]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational effects on inflaton decay, JCAP 05 (2015) 038 [arXiv:1502.02475] [INSPIRE].
  32. [32]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in oscillating backgrounds and its cosmological implications, Phys. Rev. D 94 (2016) 063517 [arXiv:1604.08898] [INSPIRE].
  33. [33]
    D.J.H. Chung, E.W. Kolb and A.J. Long, Gravitational production of super-Hubble-mass particles: an analytic approach, JHEP 01 (2019) 189 [arXiv:1812.00211] [INSPIRE].
  34. [34]
    P.J.E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev. D 59 (1999) 063505 [astro-ph/9810509] [INSPIRE].
  35. [35]
    R. Dabrowski and G.V. Dunne, Superadiabatic particle number in Schwinger and de Sitter particle production, Phys. Rev. D 90 (2014) 025021 [arXiv:1405.0302] [INSPIRE].
  36. [36]
    D.J.H. Chung, Classical inflation field induced creation of superheavy dark matter, Phys. Rev. D 67 (2003) 083514 [hep-ph/9809489] [INSPIRE].
  37. [37]
    J. Quintin, Y.-F. Cai and R.H. Brandenberger, Matter creation in a nonsingular bouncing cosmology, Phys. Rev. D 90 (2014) 063507 [arXiv:1406.6049] [INSPIRE].
  38. [38]
    D.C.F. Celani, N. Pinto-Neto and S.D.P. Vitenti, Particle creation in bouncing cosmologies, Phys. Rev. D 95 (2017) 023523 [arXiv:1610.04933] [INSPIRE].
  39. [39]
    M.V. Berry, Histories of adiabatic quantum transitions, Proc. Roy. Soc. Lond. A 429 (1990) 61.Google Scholar
  40. [40]
    M.V. Berry and R. Lim, Universal transition prefactors derived by superadiabatic renormalization, J. Phys. A 26 (1993) 4737.Google Scholar
  41. [41]
    V. Betz and S. Teufel, Precise coupling terms in adiabatic quantum evolution: the generic case, Commun. Math. Phys. 260 (2005) 481 [math-ph/0411083].
  42. [42]
    S. Winitzki, Cosmological particle production and the precision of the WKB approximation, Phys. Rev. D 72 (2005) 104011 [gr-qc/0510001] [INSPIRE].
  43. [43]
    S.P. Kim, The Stokes phenomenon and quantum tunneling for de Sitter radiation in nonstationary coordinates, JHEP 09 (2010) 054 [arXiv:1006.4004] [INSPIRE].
  44. [44]
    S.P. Kim, Geometric origin of Stokes phenomenon for de Sitter radiation, Phys. Rev. D 88 (2013) 044027 [arXiv:1307.0590] [INSPIRE].
  45. [45]
    C.K. Dumlu and G.V. Dunne, The Stokes phenomenon and Schwinger vacuum pair production in time-dependent laser pulses, Phys. Rev. Lett. 104 (2010) 250402 [arXiv:1004.2509] [INSPIRE].
  46. [46]
    R. Dabrowski and G.V. Dunne, Time dependence of adiabatic particle number, Phys. Rev. D 94 (2016) 065005 [arXiv:1606.00902] [INSPIRE].
  47. [47]
    N.J. Higham et al., Princeton companion to applied mathematics, Princeton University Press, Princeton, U.S.A. (2015).Google Scholar
  48. [48]
    M.V. Barry, Uniform asymptotic smoothing of Stokess discontinuities, Proc. Roy. Soc. Lond. A 422 (1989) 7 [INSPIRE].
  49. [49]
    R.B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, U.S.A. (1973).Google Scholar
  50. [50]
    D.J.H. Chung, E.W. Kolb, A. Riotto and L. Senatore, Isocurvature constraints on gravitationally produced superheavy dark matter, Phys. Rev. D 72 (2005) 023511 [astro-ph/0411468] [INSPIRE].
  51. [51]
    D.J.H. Chung, L.L. Everett, H. Yoo and P. Zhou, Gravitational fermion production in inflationary cosmology, Phys. Lett. B 712 (2012) 147 [arXiv:1109.2524] [INSPIRE].
  52. [52]
    D.J.H. Chung, H. Yoo and P. Zhou, Fermionic isocurvature perturbations, Phys. Rev. D 91 (2015) 043516 [arXiv:1306.1966] [INSPIRE].
  53. [53]
    K. Kannike, A. Racioppi and M. Raidal, Super-heavy dark mattertowards predictive scenarios from inflation, Nucl. Phys. B 918 (2017) 162 [arXiv:1605.09378] [INSPIRE].
  54. [54]
    G. Alonso- Álvarez and J. Jaeckel, Lightish but clumpy: scalar dark matter from inflationary fluctuations, JCAP 10 (2018) 022 [arXiv:1807.09785] [INSPIRE].
  55. [55]
    E.W. Kolb and A.J. Long, Superheavy dark matter through Higgs portal operators, Phys. Rev. D 96 (2017) 103540 [arXiv:1708.04293] [INSPIRE].
  56. [56]
    M. Fairbairn, K. Kainulainen, T. Markkanen and S. Nurmi, Despicable dark relics: generated by gravity with unconstrained masses, JCAP 04 (2019) 005 [arXiv:1808.08236] [INSPIRE].
  57. [57]
    M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, Charged Planckian interacting dark matter, JCAP 01 (2019) 021 [arXiv:1810.01428] [INSPIRE].
  58. [58]
    X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
  59. [59]
    X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].
  60. [60]
    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
  61. [61]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].
  62. [62]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  63. [63]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
  64. [64]
    T. Markkanen and A. Rajantie, Massive scalar field evolution in de Sitter, JHEP 01 (2017) 133 [arXiv:1607.00334] [INSPIRE].
  65. [65]
    T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe, JHEP 10 (2014) 166 [arXiv:1408.4141] [INSPIRE].
  66. [66]
    K. Enqvist, R.J. Hardwick, T. Tenkanen, V. Vennin and D. Wands, A novel way to determine the scale of inflation, JCAP 02 (2018) 006 [arXiv:1711.07344] [INSPIRE].
  67. [67]
    K. Dimopoulos, L. Donaldson Wood and C. Owen, Instant preheating in quintessential inflation with α-attractors, Phys. Rev. D 97 (2018) 063525 [arXiv:1712.01760] [INSPIRE].
  68. [68]
    T. Nakama and J. Yokoyama, Reheating through the Higgs amplified by spinodal instabilities and gravitational creation of gravitons, PTEP 2019 (2019) 033E02 [arXiv:1803.07111] [INSPIRE].
  69. [69]
    H. An, M.B. Wise and Z. Zhang, De Sitter quantum loops as the origin of primordial non-Gaussianities, Phys. Rev. D 99 (2019) 056007 [arXiv:1806.05194] [INSPIRE].
  70. [70]
    X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].
  71. [71]
    S. Pi and M. Sasaki, Curvature perturbation spectrum in two-field inflation with a turning trajectory, JCAP 10 (2012) 051 [arXiv:1205.0161] [INSPIRE].
  72. [72]
    X. Tong, Y. Wang and S. Zhou, On the effective field theory for quasi-single field inflation, JCAP 11 (2017) 045 [arXiv:1708.01709] [INSPIRE].
  73. [73]
    A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly coupled quasi-single field inflation, JCAP 01 (2018) 041 [arXiv:1710.03054] [INSPIRE].
  74. [74]
    Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP 04 (2019) 125 [arXiv:1812.10654] [INSPIRE].
  75. [75]
    X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].
  76. [76]
    J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].
  77. [77]
    X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].
  78. [78]
    X. Chen, M.H. Namjoo and Y. Wang, Probing the primordial universe using massive fields, arXiv:1601.06228 [INSPIRE].
  79. [79]
    X. Chen, M.H. Namjoo and Y. Wang, A direct probe of the evolutionary history of the primordial universe, Sci. China Phys. Mech. Astron. 59 (2016) 101021 [arXiv:1608.01299] [INSPIRE].
  80. [80]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to Standard Model fields in inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].
  81. [81]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model background of the cosmological collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].
  82. [82]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].
  83. [83]
    Y.-P. Wu and J. Yokoyama, Loop corrections to primordial fluctuations from inflationary phase transitions, JCAP 05 (2018) 009 [arXiv:1704.05026] [INSPIRE].
  84. [84]
    W.Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger effect on primordial spectra, JHEP 04 (2019) 066 [arXiv:1810.09815] [INSPIRE].
  85. [85]
    S. Weinberg, Ultraviolet divergences in cosmological correlations, Phys. Rev. D 83 (2011) 063508 [arXiv:1011.1630] [INSPIRE].
  86. [86]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino signatures in primordial non-Gaussianities, JHEP 09 (2018) 022 [arXiv:1805.02656] [INSPIRE].
  87. [87]
    G.R. Dvali and S.-H. Henry Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [INSPIRE].
  88. [88]
    S.-H. Henry Tye, Brane inflation: string theory viewed from the cosmos, Lect. Notes Phys. 737 (2008) 949 [hep-th/0610221] [INSPIRE].
  89. [89]
    D.J.H. Chung, H. Yoo and P. Zhou, Quadratic isocurvature cross-correlation, Ward identity and dark matter, Phys. Rev. D 87 (2013) 123502 [arXiv:1303.6024] [INSPIRE].
  90. [90]
    E. Pajer, F. Schmidt and M. Zaldarriaga, The observed squeezed limit of cosmological three-point functions, Phys. Rev. D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].
  91. [91]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  92. [92]
    P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].
  93. [93]
    R. Wong, Asymptotic and computational analysis: conference in honor of Frank W.J. Olvers 65th birthday, CRC Press, U.S.A. (1990).Google Scholar
  94. [94]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].
  95. [95]
    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
  96. [96]
    X. Chen, Primordial non-Gaussianities from inflation models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].
  97. [97]
    Y. Wang, Inflation, cosmic perturbations and non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].
  98. [98]
    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Lingfeng Li
    • 1
  • Tomohiro Nakama
    • 1
  • Chon Man Sou
    • 2
    • 1
  • Yi Wang
    • 2
    • 1
    Email author
  • Siyi Zhou
    • 2
    • 1
  1. 1.Jockey Club Institute for Advanced StudyThe Hong Kong University of Science and TechnologyKowloonP.R. China
  2. 2.Department of PhysicsThe Hong Kong University of Science and TechnologyKowloonP.R. China

Personalised recommendations