Advertisement

Black hole microstate cosmology

  • Sean Cooper
  • Moshe Rozali
  • Brian Swingle
  • Mark Van Raamsdonk
  • Christopher Waddell
  • David WakehamEmail author
Open Access
Regular Article - Theoretical Physics
  • 77 Downloads

Abstract

In this note, we explore the possibility that certain high-energy holographic CFT states correspond to black hole microstates with a geometrical behind-the-horizon region, modelled by a portion of a second asymptotic region terminating at an end-of-the-world (ETW) brane. We study the time-dependent physics of this behind-the-horizon region, whose ETW boundary geometry takes the form of a closed FRW spacetime. We show that in many cases, this behind-the-horizon physics can be probed directly by looking at the time dependence of entanglement entropy for sufficiently large spatial CFT subsystems. We study in particular states defined via Euclidean evolution from conformal boundary states and give specific predictions for the behavior of the entanglement entropy in this case. We perform analogous calculations for the SYK model and find qualitative agreement with our expectations. We also calculate holographic complexity for the d = 2 ETW geometries, finding that complexity-action and complexity-volume proposals give the same linear growth at late times, but differ at early times.

A fascinating possibility is that for certain states, we might have gravity localized to the ETW brane as in the Randall-Sundrum II scenario for cosmology. In this case, the effective description of physics beyond the horizon could be a big bang/big crunch cosmology of the same dimensionality as the CFT. In this case, the d-dimensional CFT describing the black hole microstate would give a precise, microscopic description of the d-dimensional cosmological physics.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Conformal Field Theory Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].
  2. [2]
    O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS 2 gravity, arXiv:1707.02325 [INSPIRE].
  8. [8]
    A. Almheiri, A. Mousatov and M. Shyani, Escaping the Interiors of Pure Boundary-State Black Holes, arXiv:1803.04434 [INSPIRE].
  9. [9]
    J. de Boer, R. Van Breukelen, S.F. Lokhande, K. Papadodimas and E. Verlinde, On the interior geometry of a typical black hole microstate, JHEP 05 (2019) 010 [arXiv:1804.10580] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B 195 (1982) 481 [INSPIRE].
  11. [11]
    K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
  13. [13]
    D. Harlow, Aspects of the Papadodimas-Raju Proposal for the Black Hole Interior, JHEP 11 (2014) 055 [arXiv:1405.1995] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].
  15. [15]
    P. Hayden and G. Penington, Learning the Alpha-bits of Black Holes, arXiv:1807.06041 [INSPIRE].
  16. [16]
    A. Almheiri, Holographic Quantum Error Correction and the Projected Black Hole Interior, arXiv:1810.02055 [INSPIRE].
  17. [17]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys. 931 (2017) 1 [arXiv:1609.01287].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Cardy, Quantum Quenches to a Critical Point in One Dimension: some further results, J. Stat. Mech. 1602 (2016) 023103 [arXiv:1507.07266] [INSPIRE].
  22. [22]
    J. Cardy, Bulk Renormalization Group Flows and Boundary States in Conformal Field Theories, SciPost Phys. 3 (2017) 011 [arXiv:1706.01568] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].
  24. [24]
    T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.R. White, Minimally entangled typical quantum states at finite temperature, Phys. Rev. Lett. 102 (2009) 190601.ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E.M. Stoudenmire and S.R. White, Minimally entangled typical thermal state algorithms, New J. Phys. 12 (2010) 055026, [arXiv:1002.1305].
  27. [27]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  29. [29]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Banks and W. Fischler, An holographic cosmology, hep-th/0111142 [INSPIRE].
  31. [31]
    T. Banks and W. Fischler, The holographic spacetime model of cosmology, Int. J. Mod. Phys. D 27 (2018) 1846005 [arXiv:1806.01749] [INSPIRE].
  32. [32]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2004) 393 [hep-th/0407125] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. Freivogel, V.E. Hubeny, A. Maloney, R.C. Myers, M. Rangamani and S. Shenker, Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].
  36. [36]
    J. Louko and D. Marolf, Single exterior black holes and the AdS/CFT conjecture, Phys. Rev. D 59 (1999) 066002 [hep-th/9808081] [INSPIRE].
  37. [37]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    K. Papadodimas, A class of non-equilibrium states and the black hole interior, arXiv:1708.06328 [INSPIRE].
  39. [39]
    M. Miyaji, S. Ryu, T. Takayanagi and X. Wen, Boundary States as Holographic Duals of Trivial Spacetimes, JHEP 05 (2015) 152 [arXiv:1412.6226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    P. Calabrese and J. Cardy, Quantum quenches in 1+1 dimensional conformal field theories, J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].
  41. [41]
    M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal field theory, Phys. Rev. D 96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].
  43. [43]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].
  44. [44]
    I. Affleck and A.W.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].
  45. [45]
    D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].
  46. [46]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
  47. [47]
    P. Kraus, Dynamics of anti-de Sitter domain walls, JHEP 12 (1999) 011 [hep-th/9910149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    I. Bah, A. Faraggi, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic entanglement entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A 24 (2009) 2703 [arXiv:0710.5483] [INSPIRE].
  50. [50]
    N. Bao and H. Ooguri, Distinguishability of black hole microstates, Phys. Rev. D 96 (2017) 066017 [arXiv:1705.07943] [INSPIRE].
  51. [51]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
  55. [55]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler Quantum Gravity, Class. Quant. Grav. 29 (2012) 235025 [arXiv:1206.1323] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement II: It from BC-bit, arXiv:1809.01197 [INSPIRE].
  57. [57]
    R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    R. Maartens and K. Koyama, Brane-World Gravity, Living Rev. Rel. 13 (2010) 5 [arXiv:1004.3962] [INSPIRE].CrossRefzbMATHGoogle Scholar
  59. [59]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    P.D. Mannheim, Brane-Localized Gravity, World Scientific, (2005).Google Scholar
  61. [61]
    J. Garriga and T. Tanaka, Gravity in the brane world, Phys. Rev. Lett. 84 (2000) 2778 [hep-th/9911055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].
  63. [63]
    S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001] [INSPIRE].
  64. [64]
    S.B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03 (2000) 023 [hep-th/0002091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    S.W. Hawking, T. Hertog and H.S. Reall, Brane new world, Phys. Rev. D 62 (2000) 043501 [hep-th/0003052] [INSPIRE].
  66. [66]
    S.B. Giddings and E. Katz, Effective theories and black hole production in warped compactifications, J. Math. Phys. 42 (2001) 3082 [hep-th/0009176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    N.S. Deger and A. Kaya, AdS/CFT and Randall-Sundrum model without a brane, JHEP 05 (2001) 030 [hep-th/0010141] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  68. [68]
    S. de Haro, K. Skenderis and S.N. Solodukhin, Gravity in warped compactifications and the holographic stress tensor, Class. Quant. Grav. 18 (2001) 3171 [hep-th/0011230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    P. Singh and N. Dadhich, Localization of gravity in brane world cosmologies, Mod. Phys. Lett. A 18 (2003) 983 [hep-th/0204190] [INSPIRE].
  71. [71]
    P. Singh and N. Dadhich, Localized gravity on FRW branes, hep-th/0208080 [INSPIRE].
  72. [72]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].
  73. [73]
    E. Kiritsis and F. Nitti, On massless 4D gravitons from asymptotically AdS 5 space-times, Nucl. Phys. B 772 (2007) 67 [hep-th/0611344] [INSPIRE].
  74. [74]
    S.S. Seahra, C. Clarkson and R. Maartens, Delocalization of brane gravity by a bulk black hole, Class. Quant. Grav. 22 (2005) L91 [gr-qc/0504023] [INSPIRE].
  75. [75]
    C. Clarkson and S.S. Seahra, Braneworld resonances, Class. Quant. Grav. 22 (2005) 3653 [gr-qc/0505145] [INSPIRE].
  76. [76]
    A. Hebecker and J. March-Russell, Randall-Sundrum II cosmology, AdS / CFT and the bulk black hole, Nucl. Phys. B 608 (2001) 375 [hep-ph/0103214] [INSPIRE].
  77. [77]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple Holographic Duals to Boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Holographic duals of Boundary CFTs, JHEP 07 (2012) 177 [arXiv:1205.5303] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    M. Gutperle and J. Samani, Holographic RG-flows and Boundary CFTs, Phys. Rev. D 86 (2012) 106007 [arXiv:1207.7325] [INSPIRE].
  80. [80]
    D. Friedan, A. Konechny and C. Schmidt-Colinet, Lower bound on the entropy of boundaries and junctions in 1+1d quantum critical systems, Phys. Rev. Lett. 109 (2012) 140401 [arXiv:1206.5395] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D. Friedan, A. Konechny and C. Schmidt-Colinet, Precise lower bound on Monster brane boundary entropy, JHEP 07 (2013) 099 [arXiv:1305.2122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].
  85. [85]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  86. [86]
    Y. Nomura, N. Salzetta, F. Sanches and S.J. Weinberg, Toward a Holographic Theory for General Spacetimes, Phys. Rev. D 95 (2017) 086002 [arXiv:1611.02702] [INSPIRE].
  87. [87]
    S.B. Giddings, Quantum-first gravity, Found. Phys. 49 (2019) 177 [arXiv:1803.04973] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    Y. Ito, J. Nishimura and A. Tsuchiya, Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model, JHEP 11 (2015) 070 [arXiv:1506.04795] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    H. Araki, Gibbs states of a one dimensional quantum lattice, Commun. Math. Phys. 14 (1969) 120 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    E. Poisson, A relativists toolkit: the mathematics of black-hole mechanics, Cambridge University Press, (2004).Google Scholar
  92. [92]
    G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275 [INSPIRE].
  93. [93]
    A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].
  94. [94]
    K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sean Cooper
    • 1
  • Moshe Rozali
    • 1
  • Brian Swingle
    • 2
  • Mark Van Raamsdonk
    • 1
  • Christopher Waddell
    • 1
  • David Wakeham
    • 1
    Email author
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Condensed Matter Theory Center, Maryland Center for Fundamental Physics, Joint Center for Quantum Information and Computer Science, and Department of PhysicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations