Advertisement

Threshold resummation for dark-matter production at the LHC

  • M. Krämer
  • A. Kulesza
  • A. MückEmail author
  • R. Schürmann
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We derive precision predictions for the production of dark-matter particles recoiling against a jet with large transverse momentum at the LHC. The dark-matter fermions are described within a simplified model and couple to the Standard Model via a vector mediator. Our predictions for the mono-jet signature include the resummation of the leading and next-to-leading threshold logarithms. The corresponding matching coefficient is evaluated at NLO. The resummed result is matched to the fixed-order NLO cross section obtained from the MadGraph framework. We discuss numerical results for several benchmark scenarios at the LHC.

Keywords

Beyond Standard Model Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2019_10886_MOESM1_ESM.txt (416 kb)
ESM 1 (TXT 416 kb)

References

  1. [1]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  2. [2]
    F. Kahlhoefer, Review of LHC Dark Matter Searches, Int. J. Mod. Phys. A 32 (2017) 1730006 [arXiv:1702.02430] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.M. Lindert et al., Precise predictions for V + jets dark matter backgrounds, Eur. Phys. J. C 77 (2017) 829 [arXiv:1705.04664] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond Effective Field Theory for Dark Matter Searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].
  6. [6]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130 [arXiv:1806.00843] [INSPIRE].
  8. [8]
    ATLAS collaboration, Constraints on mediator-based dark matter models using \( \sqrt{s} \) = 13 TeV pp collisions at the LHC with the ATLAS detector, ATLAS-CONF-2018-051.
  9. [9]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Zmodels from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.J. Fox and C. Williams, Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  11. [11]
    U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  13. [13]
    M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Neubert, J. Wang and C. Zhang, Higher-Order QCD Predictions for Dark Matter Production in Mono-Z Searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Das, C. Degrande, V. Hirschi, F. Maltoni and H.-S. Shao, NLO predictions for the production of a spin-two particle at the LHC, Phys. Lett. B 770 (2017) 507 [arXiv:1605.09359] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Kraml, U. Laa, K. Mawatari and K. Yamashita, Simplified dark matter models with a spin-2 mediator at the LHC, Eur. Phys. J. C 77 (2017) 326 [arXiv:1701.07008] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Afik et al., DM + bb simulations with DMSimp: an update, in Dark Matter at the LHC 2018: Experimental and theoretical workshop (DM@LHC 2018), Heidelberg, Germany, April 3-6, 2018 (2018) [arXiv:1811.08002] [INSPIRE].
  18. [18]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  20. [20]
    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  22. [22]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  23. [23]
    D. de Florian, A. Kulesza and W. Vogelsang, Threshold resummation for high-transverse-momentum Higgs production at the LHC, JHEP 02 (2006) 047 [hep-ph/0511205] [INSPIRE].
  24. [24]
    S. Catani, M.L. Mangano and P. Nason, Sudakov resummation for prompt photon production in hadron collisions, JHEP 07 (1998) 024 [hep-ph/9806484] [INSPIRE].
  25. [25]
    S. Catani, M.L. Mangano, P. Nason, C. Oleari and W. Vogelsang, Sudakov resummation effects in prompt photon hadroproduction, JHEP 03 (1999) 025 [hep-ph/9903436] [INSPIRE].
  26. [26]
    E. Laenen, G. Oderda and G.F. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett. B 438 (1998) 173 [hep-ph/9806467] [INSPIRE].
  27. [27]
    G.F. Sterman and W. Vogelsang, Threshold resummation and rapidity dependence, JHEP 02 (2001) 016 [hep-ph/0011289] [INSPIRE].
  28. [28]
    D. de Florian and W. Vogelsang, Threshold resummation for the prompt-photon cross section revisited, Phys. Rev. D 72 (2005) 014014 [hep-ph/0506150] [INSPIRE].
  29. [29]
    N. Kidonakis and J.F. Owens, Soft gluon resummation and NNLO corrections for direct photon production, Phys. Rev. D 61 (2000) 094004 [hep-ph/9912388] [INSPIRE].
  30. [30]
    N. Kidonakis and V. Del Duca, Electroweak boson hadroproduction at large transverse momentum: Factorization, resummation and NNLO corrections, Phys. Lett. B 480 (2000) 87 [hep-ph/9911460] [INSPIRE].
  31. [31]
    N. Kidonakis and A. Sabio Vera, W hadroproduction at large transverse momentum beyond next-to-leading order, JHEP 02 (2004) 027 [hep-ph/0311266] [INSPIRE].
  32. [32]
    R.J. Gonsalves, N. Kidonakis and A. Sabio Vera, W production at large transverse momentum at the large hadron collider, Phys. Rev. Lett. 95 (2005) 222001 [hep-ph/0507317] [INSPIRE].
  33. [33]
    S. Catani, M. Grazzini and A. Torre, Soft-gluon resummation for single-particle inclusive hadroproduction at high transverse momentum, Nucl. Phys. B 874 (2013) 720 [arXiv:1305.3870] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    P. Hinderer, F. Ringer, G. Sterman and W. Vogelsang, Threshold Resummation at NNLL for Single-particle Production in Hadronic Collisions, Phys. Rev. D 99 (2019) 054019 [arXiv:1812.00915] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Bacchetta, G. Bozzi, M. Lambertsen, F. Piacenza, J. Steiglechner and W. Vogelsang, Difficulties in the description of Drell-Yan processes at moderate invariant mass and high transverse momentum, arXiv:1901.06916 [INSPIRE].
  36. [36]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    T. Becher, C. Lorentzen and M.D. Schwartz, Resummation for W and Z production at large pT, Phys. Rev. Lett. 108 (2012) 012001 [arXiv:1106.4310] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F.P. Huang, C.S. Li, H.T. Li and J. Wang, Renormalization-group improved predictions for Higgs boson production at large p T , Phys. Rev. D 90 (2014) 094024 [arXiv:1406.2591] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Bonvini, S. Forte, M. Ghezzi and G. Ridolfi, Threshold Resummation in SCET vs. Perturbative QCD: An Analytic Comparison, Nucl. Phys. B 861 (2012) 337 [arXiv:1201.6364] [INSPIRE].
  40. [40]
    G. Sterman and M. Zeng, Quantifying Comparisons of Threshold Resummations, JHEP 05 (2014) 132 [arXiv:1312.5397] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Bonvini, S. Forte, G. Ridolfi and L. Rottoli, Resummation prescriptions and ambiguities in SCET vs. direct QCD: Higgs production as a case study, JHEP 01 (2015) 046 [arXiv:1409.0864] [INSPIRE].
  42. [42]
    M. Beneke, P. Falgari, J. Piclum, C. Schwinn and C. Wever, Higher-order soft and Coulomb corrections to squark and gluino production at the LHC, PoS(RADCOR2013) 051 (2013) [arXiv:1312.0837] [INSPIRE].
  43. [43]
    A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Associated ttH production at the LHC: Theoretical predictions at NLO+NNLL accuracy, Phys. Rev. D 97 (2018) 114007 [arXiv:1704.03363] [INSPIRE].
  44. [44]
    W. Beenakker, C. Borschensky, M. Krämer, A. Kulesza and E. Laenen, NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation, JHEP 12 (2016) 133 [arXiv:1607.07741] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of soft gluons in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].
  46. [46]
    A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation in electroweak boson production, Phys. Rev. D 66 (2002) 014011 [hep-ph/0202251] [INSPIRE].
  47. [47]
  48. [48]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  50. [50]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  52. [52]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • M. Krämer
    • 1
  • A. Kulesza
    • 2
  • A. Mück
    • 1
    Email author
  • R. Schürmann
    • 1
    • 3
  1. 1.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany
  2. 2.Institute for Theoretical PhysicsWWU MünsterMünsterGermany
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations