Advertisement

A codex on linearized Nordström supergravity in eleven and ten dimensional superspaces

  • S. James GatesJr.Email author
  • Yangrui Hu
  • Hanzhi Jiang
  • S.-N. Hazel Mak
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

As the full off-shell theories of supergravity in the important dimensions of eleven and ten dimensions are currently unknown, we introduce a superfield formalism as a foundation and experimental laboratory to explore the possibility that the scalar versions of the higher dimensional supergravitation theory can be constructed.

Keywords

Supergravity Models Superspaces Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Isaacson, Einstein His Life and Universe, p. 106, Simon & Schuster, NY (2007).Google Scholar
  2. [2]
    K. Schwarzschild, On the permissible curvature of space, Vierteljahrschrift d. Astronom. Gesellschaft. 35 (1900) 337.Google Scholar
  3. [3]
    H. Minkowski, The Fundamental Equations for Electromagnetic Processes in Moving Bodies, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 53–111 (1907).Google Scholar
  4. [4]
    H. Minkowski, Space and Time, Phys. Z. 10 (1909) 75.Google Scholar
  5. [5]
    W. Isaacson, Einstein His Life and Universe, p. 161, Simon & Schuster, NY (2007).Google Scholar
  6. [6]
    G. Nordström, Inertial and gravitational mass in relativistic mechanics, Annalen Phys. 40 (1913) 856.Google Scholar
  7. [7]
    G. Nordström, About the theory of gravitation from the point of view of the principle of relativity, Annalen Phys. 42 (1913) 533.Google Scholar
  8. [8]
    E. Cremmer and S. Ferrara, Formulation of Eleven-Dimensional Supergravity in Superspace, Phys. Lett. 91B (1980) 61 [INSPIRE].
  9. [9]
    L. Brink and P.S. Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace, Phys. Lett. 91B (1980) 384 [INSPIRE].
  10. [10]
    J.L. Carr, S.J. Gates Jr. and R.N. Oerter, D = 10, N = 2a Supergravity in Superspace, Phys. Lett. B 189 (1987) 68 [INSPIRE].
  11. [11]
    P.S. Howe and P.C. West, The Complete N = 2, D = 10 Supergravity, Nucl. Phys. B 238 (1984) 181 [INSPIRE].
  12. [12]
    M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, N = 2 Superstrings in a Supergravity Background, Phys. Lett. 162B (1985) 116 [INSPIRE].
  13. [13]
    B.E.W. Nilsson, Simple Ten-dimensional Supergravity in Superspace, Nucl. Phys. B 188 (1981) 176 [INSPIRE].
  14. [14]
    J. Wess and B. Zumino, Superspace Formulation of Supergravity, Phys. Lett. 66B (1977) 361 [INSPIRE].
  15. [15]
    J. Wess and B. Zumino, Superfield Lagrangian for Supergravity, Phys. Lett. 74B (1978) 51 [INSPIRE].
  16. [16]
    R. Grimm, J. Wess and B. Zumino, Consistency Checks on the Superspace Formulation of Supergravity, Phys. Lett. 73B (1978) 415 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.M. Chester, S.S. Pufu and X. Yin, The M-theory S-matrix From ABJM: Beyond 11D Supergravity, JHEP 08 (2018) 115 [arXiv:1804.00949] [INSPIRE].
  18. [18]
    D.J. Binder, S.M. Chester and S.S. Pufu, Absence of D 4 R 4 in M-theory From ABJM, arXiv:1808.10554 [INSPIRE].
  19. [19]
    D.J. Binder, S.M. Chester and S.S. Pufu, AdS 4 /CFT 3 from Weak to Strong String Coupling, arXiv:1906.07195 [INSPIRE].
  20. [20]
    B.M. Zupnik and D.G. Pak, Superfield Formulation of the Simplest Three-dimensional Gauge Theories and Conformal Supergravities, Theor. Math. Phys. 77 (1988) 1070 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys. A 8 (1993) 3371 [INSPIRE].
  22. [22]
    S.J. Gates Jr. and H. Nishino, Remarks on the N = 2 supersymmetric Chern-Simons theories, Phys. Lett. B 281 (1992) 72 [INSPIRE].
  23. [23]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  24. [24]
    A. Salam and J.A. Strathdee, On Superfields and Fermi-Bose Symmetry, Phys. Rev. D 11 (1975) 1521 [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    K. Watt and C.W. Misner, Relativistic scalar gravity: A Laboratory for numerical relativity, gr-qc/9910032 [INSPIRE].
  26. [26]
    P. Breitenlohner, A Geometric Interpretation of Local Supersymmetry, Phys. Lett. 67B (1977) 49 [INSPIRE].
  27. [27]
    G. Woo, Scalar Superfield Dynamics from the Arnowitt-Nath Supergeometry, Lett. Nuovo Cim. 13 (1975) 546 [INSPIRE].
  28. [28]
    W. Siegel, Supergravity Superfields Without a Supermetric, Harvard U., November 1977, 16 pp., Harvard University preprint HUTP-77/A068, unpublished.Google Scholar
  29. [29]
    W. Siegel and S.J. Gates Jr., Superfield Supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].
  30. [30]
    V. Ogievetsky and E. Sokatchev, On Vector Superfield Generated by Supercurrent, Nucl. Phys. B 124 (1977) 309 [INSPIRE].
  31. [31]
    R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].
  32. [32]
    S. Deser and C.J. Isham, Canonical Vierbein Form of General Relativity, Phys. Rev. D 14 (1976) 2505 [INSPIRE].
  33. [33]
    J.A. Nester, A New gravitational energy expression with a simple positivity proof, Phys. Lett. A 83 (1981) 241 [INSPIRE].
  34. [34]
    S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].
  35. [35]
    I.L. Buchbinder and S.M. Kuzenko, Nonlocal Action for Supertrace Anomalies in Superspace of N = 1 Supergravity, Phys. Lett. B 202 (1988) 233 [INSPIRE].
  36. [36]
    S.J. Gates Jr., Superconformal symmetry in 11-D superspace and the M-theory effective action, Nucl. Phys. B 616 (2001) 85 [hep-th/0106150] [INSPIRE].
  37. [37]
    S.J. Gates Jr. and S. Vashakidze, On D = 10, N = 1 Supersymmetry, Superspace Geometry and Superstring Effects, Nucl. Phys. B 291 (1987) 172 [INSPIRE].
  38. [38]
    S.J. Gates Jr. and H. Nishino, On D = 10, N = 1 Supersymmetry, Superspace Geometry and Superstring Effects. 2., Nucl. Phys. B 291 (1987) 205 [INSPIRE].
  39. [39]
    P.S. Howe, H. Nicolai and A. Van Proeyen, Auxiliary Fields and a Superspace Lagrangian for Linearized Ten-dimensional Supergravity, Phys. Lett. 112B (1982) 446 [INSPIRE].
  40. [40]
    S. Bellucci, S.J. Gates Jr., B. Radak and S. Vashakidze, Improved Supergeometries for Type II Green-Schwarz Nonlinear σ Model, Mod. Phys. Lett. A 4 (1989) 1985 [INSPIRE].
  41. [41]
    H. Nishino and S.J. Gates Jr., Toward an off-shell 11-D supergravity limit of M-theory, Phys. Lett. B 388 (1996) 504 [hep-th/9602011] [INSPIRE].
  42. [42]
    S.J. Gates, Y. Hu, H. Jiang and S.N.H. Mak, On Linearized Nordström Supergravity in Eleven and Ten Dimensional Superspaces, arXiv:1812.05097 [INSPIRE].
  43. [43]
    S.J. Gates, Y. Hu, H. Jiang and S.N.H. Mak, On Linearized Nordström Supergravity in Eleven and Ten Dimensional Superspaces (2), arXiv:1904.02328 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • S. James GatesJr.
    • 1
    • 2
    Email author
  • Yangrui Hu
    • 1
  • Hanzhi Jiang
    • 1
    • 3
  • S.-N. Hazel Mak
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.
  2. 2.Brown Center for Theoretical PhysicsProvidenceU.S.A.
  3. 3.Department of Physics & AstronomyRutgers UniversityPiscatawayU.S.A.

Personalised recommendations