Advertisement

Production of purely gravitational dark matter: the case of fermion and vector boson

  • Yohei Ema
  • Kazunori NakayamaEmail author
  • Yong Tang
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We consider the simplest possibility for a model of particle dark matter in which dark matter has only gravitational interaction with the standard model sector. Even in such a case, it is known that the gravitational particle production in an expanding universe may lead to a correct relic abundance depending on the ination scale and the mass of dark matter particle. We provide a comprehensive and systematic analysis of the gravitational particle production of fermionic and vectorial dark matter, and emphasize that particles which are much heavier than the Hubble parameter but lighter than inaton can also be produced abundantly.

Keywords

Cosmology of Theories beyond the SM Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Parker, Quantized fields and particle creation in expanding universes. 1., Phys. Rev. 183 (1969) 1057 [INSPIRE].
  2. [2]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).CrossRefzbMATHGoogle Scholar
  3. [3]
    L.H. Ford, Gravitational particle creation and inflation, Phys. Rev. D 35 (1987) 2955 [INSPIRE].ADSGoogle Scholar
  4. [4]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1999) 023501 [hep-ph/9802238] [INSPIRE].
  5. [5]
    D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev. D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
  6. [6]
    G. Alonso- Álvarez and J. Jaeckel, Lightish but clumpy: scalar dark matter from inflationary fluctuations, JCAP 10 (2018) 022 [arXiv:1807.09785] [INSPIRE].
  7. [7]
    T. Markkanen, A. Rajantie and T. Tenkanen, Spectator dark matter, Phys. Rev. D 98 (2018) 123532 [arXiv:1811.02586] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational effects on inflaton decay, JCAP 05 (2015) 038 [arXiv:1502.02475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in oscillating backgrounds and its cosmological implications, Phys. Rev. D 94 (2016) 063517 [arXiv:1604.08898] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [Yad. Fiz. 51 (1990) 273] [INSPIRE].
  11. [11]
    J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].ADSGoogle Scholar
  12. [12]
    Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
  13. [13]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
  14. [14]
    Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter, JHEP 09 (2018) 135 [arXiv:1804.07471] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    D.J.H. Chung, E.W. Kolb and A.J. Long, Gravitational production of super-Hubble-mass particles: an analytic approach, JHEP 01 (2019) 189 [arXiv:1812.00211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Hashiba and J. Yokoyama, Gravitational particle creation for dark matter and reheating, Phys. Rev. D 99 (2019) 043008 [arXiv:1812.10032] [INSPIRE].ADSGoogle Scholar
  17. [17]
    L. Li, T. Nakama, C.M. Sou, Y. Wang and S. Zhou, Gravitational production of superheavy dark matter and associated cosmological signatures, arXiv:1903.08842 [INSPIRE].
  18. [18]
    M. Garny, M. Sandora and M.S. Sloth, Planckian interacting massive particles as dark matter, Phys. Rev. Lett. 116 (2016) 101302 [arXiv:1511.03278] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Tang and Y.-L. Wu, Pure gravitational dark matter, its mass and signatures, Phys. Lett. B 758 (2016) 402 [arXiv:1604.04701] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Tang and Y.-L. Wu, On thermal gravitational contribution to particle production and dark matter, Phys. Lett. B 774 (2017) 676 [arXiv:1708.05138] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, Theory and phenomenology of planckian interacting massive particles as dark matter, JCAP 02 (2018) 027 [arXiv:1709.09688] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136.Google Scholar
  23. [23]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  24. [24]
    P.B. Greene and L. Kofman, Preheating of fermions, Phys. Lett. B 448 (1999) 6 [hep-ph/9807339] [INSPIRE].
  25. [25]
    P.B. Greene and L. Kofman, On the theory of fermionic preheating, Phys. Rev. D 62 (2000) 123516 [hep-ph/0003018] [INSPIRE].
  26. [26]
    M. Peloso and L. Sorbo, Preheating of massive fermions after inflation: Analytical results, JHEP 05 (2000) 016 [hep-ph/0003045] [INSPIRE].
  27. [27]
    T. Asaka and H. Nagao, Non-perturbative corrections to particle production from coherent oscillation, Prog. Theor. Phys. 124 (2010) 293 [arXiv:1004.2125] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    D.H. Lyth and D. Roberts, Cosmological consequences of particle creation during inflation, Phys. Rev. D 57 (1998) 7120 [hep-ph/9609441] [INSPIRE].
  29. [29]
    V. Kuzmin and I. Tkachev, Matter creation via vacuum fluctuations in the early universe and observed ultrahigh-energy cosmic ray events, Phys. Rev. D 59 (1999) 123006 [hep-ph/9809547] [INSPIRE].
  30. [30]
    D.J.H. Chung, L.L. Everett, H. Yoo and P. Zhou, Gravitational Fermion production in inflationary cosmology, Phys. Lett. B 712 (2012) 147 [arXiv:1109.2524] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.L. Maroto and A. Mazumdar, Production of spin 3/2 particles from vacuum fluctuations, Phys. Rev. Lett. 84 (2000) 1655 [hep-ph/9904206] [INSPIRE].
  32. [32]
    R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Gravitino production after inflation, Phys. Rev. D 61 (2000) 103503 [hep-th/9907124] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G.F. Giudice, A. Riotto and I. Tkachev, Thermal and nonthermal production of gravitinos in the early universe, JHEP 11 (1999) 036 [hep-ph/9911302] [INSPIRE].
  34. [34]
    R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav. 17 (2000) 4269 [Erratum ibid. 21 (2004) 5017] [hep-th/0006179] [INSPIRE].
  35. [35]
    H.P. Nilles, M. Peloso and L. Sorbo, Nonthermal production of gravitinos and inflatinos, Phys. Rev. Lett. 87 (2001) 051302 [hep-ph/0102264] [INSPIRE].
  36. [36]
    H.P. Nilles, M. Peloso and L. Sorbo, Coupled fields in external background with application to nonthermal production of gravitinos, JHEP 04 (2001) 004 [hep-th/0103202] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Ema, K. Mukaida, K. Nakayama and T. Terada, Nonthermal gravitino production after large field inflation, JHEP 11 (2016) 184 [arXiv:1609.04716] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Farzan and A.R. Akbarieh, VDM: a model for Vector Dark Matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from inflationary fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].ADSGoogle Scholar
  41. [41]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Violent preheating in inflation with nonminimal coupling, JCAP 02 (2017) 045 [arXiv:1609.05209] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Ibarra, D. Tran and C. Weniger, Indirect searches for decaying dark matter, Int. J. Mod. Phys. A 28 (2013) 1330040 [arXiv:1307.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  45. [45]
    V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  48. [48]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.DESYHamburgGermany
  2. 2.KEK Theory CenterTsukubaJapan
  3. 3.Department of Physics, Faculty of ScienceThe University of TokyoTokyoJapan
  4. 4.Kavli IPMU (WPI)The University of TokyoKashiwaJapan

Personalised recommendations