Advertisement

Dark matter production during the thermalization era

  • Keisuke Harigaya
  • Kyohei Mukaida
  • Masaki YamadaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We revisit the non-thermal dark matter (DM) production during the thermalization and reheating era after inflation. The decay of inflaton produces high-energy particles that are thermalized to complete the reheating of the Universe. Before the thermalization is completed, DM can be produced from a collision between the high-energy particles and/or the ambient plasma. We calculate the DM abundance produced from these processes for the case where the cross section of the DM production is proportional to the n-th power of the center of mass energy. We find that the collision between the high-energy particles is almost always dominant for n ≳ 4 while it is subdominant for n≲2. The production from the ambient plasma is dominant when n≲3 and the reheating temperature is of the order of or larger than the DM mass. The production from a collision between the high-energy particle and the ambient plasma is important for n ≲ 2 and the reheating temperature is much lower than the DM mass.

Keywords

Cosmology of Theories beyond the SM Quark-Gluon Plasma Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].
  2. [2]
    K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark matter production in late time reheating, Phys. Rev. D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].
  3. [3]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
  4. [4]
    J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].
  5. [5]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].
  6. [6]
    Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
  7. [7]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
  8. [8]
    G.N. Felder, L. Kofman and A.D. Linde, Instant preheating, Phys. Rev. D 59 (1999) 123523 [hep-ph/9812289] [INSPIRE].
  9. [9]
    K. Harigaya and K. Mukaida, Thermalization after/during reheating, JHEP 05 (2014) 006 [arXiv:1312.3097] [INSPIRE].
  10. [10]
    K. Mukaida and M. Yamada, Thermalization process after inflation and effective potential of scalar field, JCAP 02 (2016) 003 [arXiv:1506.07661] [INSPIRE].
  11. [11]
    S. Davidson and S. Sarkar, Thermalization after inflation, JHEP 11 (2000) 012 [hep-ph/0009078] [INSPIRE].
  12. [12]
    P. Jaikumar and A. Mazumdar, Postinflationary thermalization and hadronization: QCD based approach, Nucl. Phys. B 683 (2004) 264 [hep-ph/0212265] [INSPIRE].
  13. [13]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
  14. [14]
    A. Kurkela and G.D. Moore, Thermalization in weakly coupled nonabelian plasmas, JHEP 12 (2011) 044 [arXiv:1107.5050] [INSPIRE].
  15. [15]
    M.C. Abraao York, A. Kurkela, E. Lu and G.D. Moore, UV cascade in classical Yang-Mills theory via kinetic theory, Phys. Rev. D 89 (2014) 074036 [arXiv:1401.3751] [INSPIRE].
  16. [16]
    A. Kurkela and E. Lu, Approach to equilibrium in weakly coupled non-Abelian plasmas, Phys. Rev. Lett. 113 (2014) 182301 [arXiv:1405.6318] [INSPIRE].
  17. [17]
    A. Kurkela and U.A. Wiedemann, Picturing perturbative parton cascades in QCD matter, Phys. Lett. B 740 (2015) 172 [arXiv:1407.0293] [INSPIRE].
  18. [18]
    M. Drewes, On the role of quasiparticles and thermal masses in nonequilibrium processes in a plasma, arXiv:1012.5380 [INSPIRE].
  19. [19]
    K. Mukaida and K. Nakayama, Dynamics of oscillating scalar field in thermal environment, JCAP 01 (2013) 017 [arXiv:1208.3399] [INSPIRE].
  20. [20]
    K. Mukaida and K. Nakayama, Dissipative effects on reheating after inflation, JCAP 03 (2013) 002 [arXiv:1212.4985] [INSPIRE].
  21. [21]
    M. Drewes and J.U. Kang, The kinematics of cosmic reheating, Nucl. Phys. B 875 (2013) 315 [Erratum ibid. B 888 (2014) 284] [arXiv:1305.0267] [INSPIRE].
  22. [22]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
  23. [23]
    T. Moroi, M. Yamaguchi and T. Yanagida, On the solution to the Polonyi problem with 0 (10-TeV) gravitino mass in supergravity, Phys. Lett. B 342 (1995) 105 [hep-ph/9409367] [INSPIRE].
  24. [24]
    M. Kawasaki, T. Moroi and T. Yanagida, Constraint on the reheating temperature from the decay of the Polonyi field, Phys. Lett. B 370 (1996) 52 [hep-ph/9509399] [INSPIRE].
  25. [25]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].
  26. [26]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].
  27. [27]
    M.A.G. Garcia, Y. Mambrini, K.A. Olive and M. Peloso, Enhancement of the dark matter abundance before reheating: applications to gravitino dark matter, Phys. Rev. D 96 (2017) 103510 [arXiv:1709.01549] [INSPIRE].
  28. [28]
    E. Dudas, T. Gherghetta, Y. Mambrini and K.A. Olive, Inflation and high-scale supersymmetry with an EeV gravitino, Phys. Rev. D 96 (2017) 115032 [arXiv:1710.07341] [INSPIRE].
  29. [29]
    M. Drees and F. Hajkarim, Dark matter production in an early matter dominated era, JCAP 02 (2018) 057 [arXiv:1711.05007] [INSPIRE].
  30. [30]
    M.A.G. Garcia and M.A. Amin, Prethermalization production of dark matter, Phys. Rev. D 98 (2018) 103504 [arXiv:1806.01865] [INSPIRE].
  31. [31]
    R. Allahverdi and J.K. Osinski, Nonthermal dark matter from modified early matter domination, Phys. Rev. D 99 (2019) 083517 [arXiv:1812.10522] [INSPIRE].
  32. [32]
    K. Kaneta, Y. Mambrini and K.A. Olive, Radiative production of nonthermal dark matter, Phys. Rev. D 99 (2019) 063508 [arXiv:1901.04449] [INSPIRE].
  33. [33]
    L.D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535.Google Scholar
  34. [34]
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103 (1956) 1811 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Gyulassy and X.-N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].
  36. [36]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from ultrarelativistic plasmas, JHEP 11 (2001) 057 [hep-ph/0109064] [INSPIRE].
  37. [37]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].
  38. [38]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
  39. [39]
    D. Besak and D. Bödeker, Hard thermal loops for soft or collinear external momenta, JHEP 05 (2010) 007 [arXiv:1002.0022] [INSPIRE].
  40. [40]
    Y. Kurata and N. Maekawa, Averaged number of the lightest supersymmetric particles in decay of superheavy particle with long lifetime, Prog. Theor. Phys. 127 (2012) 657 [arXiv:1201.3696] [INSPIRE].
  41. [41]
    K. Harigaya, T. Lin and H.K. Lou, GUTzilla dark matter, JHEP 09 (2016) 014 [arXiv:1606.00923] [INSPIRE].
  42. [42]
    Y. Mambrini, K.A. Olive, J. Quevillon and B. Zaldivar, Gauge coupling unification and nonequilibrium thermal dark matter, Phys. Rev. Lett. 110 (2013) 241306 [arXiv:1302.4438] [INSPIRE].
  43. [43]
    Y. Mambrini et al., Dark matter and gauge coupling unification in nonsupersymmetric SO(10) grand unified models, Phys. Rev. D 91 (2015) 095010 [arXiv:1502.06929] [INSPIRE].
  44. [44]
    A. Soni and Y. Zhang, Hidden SU(N) glueball dark matter, Phys. Rev. D 93 (2016) 115025 [arXiv:1602.00714] [INSPIRE].
  45. [45]
    K. Benakli, Y. Chen, E. Dudas and Y. Mambrini, Minimal model of gravitino dark matter, Phys. Rev. D 95 (2017) 095002 [arXiv:1701.06574] [INSPIRE].
  46. [46]
    E. Dudas, Y. Mambrini and K. Olive, Case for an EeV gravitino, Phys. Rev. Lett. 119 (2017) 051801 [arXiv:1704.03008] [INSPIRE].
  47. [47]
    Z. Kang, Slightly ultra-violet freeze-in a hidden gluonic sector, arXiv:1901.10934 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Keisuke Harigaya
    • 1
  • Kyohei Mukaida
    • 2
  • Masaki Yamada
    • 3
    Email author
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.DESYHamburgGermany
  3. 3.Institute of Cosmology, Department of Physics and AstronomyTufts UniversityMedfordU.S.A.

Personalised recommendations