Advertisement

Gluon bremsstrahlung in finite media beyond multiple soft scattering approximation

  • Yacine Mehtar-TaniEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We revisit the calculation of the medium-induced gluon spectrum in a finite QCD medium and develop a new approach that goes beyond multiple soft scattering approximation. We show by expanding around the harmonic oscillator that the first two orders encompass the two known analytic limits: single hard and multiple soft scattering regimes, valid at high and low frequencies, respectively. Finally, we investigate the sensitivity of our results to the infrared and observe that for large media the spectrum is weakly dependent on the infrared medium scale.

Keywords

Heavy Ion Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p(t) Jets in Hadron-Hadron Collisions, FERMILAB-PUB-82-059-THY, FERMILAB-PUB-82-059-T, [INSPIRE].
  2. [2]
    PHENIX collaboration, Suppression of hadrons with large transverse momentum in central Au+Au collisions at \( \sqrt{s_{NN}}=130 \) GeV, Phys. Rev. Lett. 88 (2002) 022301 [nucl-ex/0109003] [INSPIRE].
  3. [3]
    STAR collaboration, Disappearance of back-to-back high p T hadron correlations in central Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 90 (2003) 082302 [nucl-ex/0210033] [INSPIRE].
  4. [4]
    ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{s_{NN}}=2.77 \) TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
  5. [5]
    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
  6. [6]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigné and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
  7. [7]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigné and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
  8. [8]
    B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
  9. [9]
    B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
  10. [10]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
  11. [11]
    Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].
  12. [12]
    J.-P. Blaizot and Y. Mehtar-Tani, Jet Structure in Heavy Ion Collisions, Int. J. Mod. Phys. E 24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].
  13. [13]
    L.D. Landau and I. Pomeranchuk, Electron cascade process at very high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 735.Google Scholar
  14. [14]
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103 (1956) 1811 [INSPIRE].
  15. [15]
    S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].
  16. [16]
    W. Ke, Y. Xu and S.A. Bass, Modeling of quantum-coherence effects in parton radiative energy loss, arXiv:1810.08177 [INSPIRE].
  17. [17]
    B. Schenke, C. Gale and S. Jeon, MARTINI: An event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].
  18. [18]
    K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U.A. Wiedemann, A Monte Carlo Model forJet Quenching’, Eur. Phys. J. C 60 (2009) 617 [arXiv:0804.3568] [INSPIRE].
  19. [19]
    U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].
  20. [20]
    J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Medium-induced gluon branching, JHEP 01 (2013) 143 [arXiv:1209.4585] [INSPIRE].
  21. [21]
    L. Apolinário, N. Armesto, J.G. Milhano and C.A. Salgado, Medium-induced gluon radiation and colour decoherence beyond the soft approximation, JHEP 02 (2015) 119 [arXiv:1407.0599] [INSPIRE].
  22. [22]
    S. Jeon and G.D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev. C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].
  23. [23]
    J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Probabilistic picture for medium-induced jet evolution, JHEP 06 (2014) 075 [arXiv:1311.5823] [INSPIRE].
  24. [24]
    J.-P. Blaizot, E. Iancu and Y. Mehtar-Tani, Medium-induced QCD cascade: democratic branching and wave turbulence, Phys. Rev. Lett. 111 (2013) 052001 [arXiv:1301.6102] [INSPIRE].
  25. [25]
    M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
  26. [26]
    G. Ovanesyan and I. Vitev, Medium-induced parton splitting kernels from Soft Collinear Effective Theory with Glauber gluons, Phys. Lett. B 706 (2012) 371 [arXiv:1109.5619] [INSPIRE].
  27. [27]
    M.D. Sievert and I. Vitev, Quark branching in QCD matter to any order in opacity beyond the soft gluon emission limit, Phys. Rev. D 98 (2018) 094010 [arXiv:1807.03799] [INSPIRE].
  28. [28]
    X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].
  29. [29]
    G. Molière, Theorie der Streuung schneller geladener Teilchen II Mehrfach-und Vielfachstreuung, Z. Naturforsch. 3a (1948) 78.Google Scholar
  30. [30]
    E. Iancu, K. Itakura and D.N. Triantafyllopoulos, Cronin effect and high p-perpendicular suppression in the nuclear gluon distribution at small x, Nucl. Phys. A 742 (2004) 182 [hep-ph/0403103] [INSPIRE].
  31. [31]
    P. Aurenche, F. Gelis and H. Zaraket, A simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].
  32. [32]
    X.-N. Wang and M. Gyulassy, Gluon shadowing and jet quenching in A + A collisions at \( \sqrt{s}=200 \) GeV, Phys. Rev. Lett. 68 (1992) 1480 [INSPIRE].
  33. [33]
    C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].
  34. [34]
    N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].
  35. [35]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Radiative energy loss of high-energy partons traversing an expanding QCD plasma, Phys. Rev. C 58 (1998) 1706 [hep-ph/9803473] [INSPIRE].
  36. [36]
    M. Abramowitz and I.A. Stegun eds., Handbook of Mathematical Functions, Dover Publ., New York, U.S.A., (1965).Google Scholar
  37. [37]
    P.B. Arnold, Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding Medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].
  38. [38]
    JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].
  39. [39]
    P.B. Arnold and C. Dogan, QCD Splitting/Joining Functions at Finite Temperature in the Deep LPM Regime, Phys. Rev. D 78 (2008) 065008 [arXiv:0804.3359] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics Department, Brookhaven National LaboratoryUptonU.S.A.

Personalised recommendations