Advertisement

Extremal and near-extremal black holes and near-CFT1

  • Upamanyu Moitra
  • Sandip P. Trivedi
  • V. VishalEmail author
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We study the behaviour of extremal and near-extremal black holes at low energies and low temperatures and find that it can be understood from the near-horizon AdS2 region. Our analysis includes charged matter and also goes beyond the S-wave approximation. We find that the leading behaviour at low energies arises from a mode linked to time reparametrisations and from phase modes arising from gauge fields. At somewhat higher energies, additional modes arising from higher partial waves can also be cumulatively significant. These results can be applied quite generally to cases where an AdS2 × Sd near-horizon geometry arises, including black holes in asymptotically AdS and flat space-times.

Keywords

2D Gravity AdS-CFT Correspondence Black Holes Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Entropy Function and AdS 2 /CF T 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].
  2. [2]
    A. Sen, Quantum Entropy Function from AdS 2 /CF T 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
  3. [3]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].
  4. [4]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  5. [5]
    A. Kitaev, A simple model of quantum holography, talk at KITP, 2015.Google Scholar
  6. [6]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  7. [7]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  8. [8]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].
  9. [9]
    R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys. B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE].
  10. [10]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  11. [11]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].
  12. [12]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].
  13. [13]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].
  14. [14]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].
  15. [15]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  16. [16]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  17. [17]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum Chaos and Holographic Tensor Models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].
  18. [18]
    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].
  19. [19]
    A. Eberlein, V. Kasper, S. Sachdev and J. Steinberg, Quantum quench of the Sachdev-Ye-Kitaev Model, Phys. Rev. B 96 (2017) 205123 [arXiv:1706.07803] [INSPIRE].
  20. [20]
    S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla and R. Poojary, Notes on melonic O(N)q−1 tensor models, JHEP 06 (2018) 094 [arXiv:1707.09352] [INSPIRE].
  21. [21]
    J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP 11 (2017) 149 [arXiv:1707.08013] [INSPIRE].
  22. [22]
    J. Yoon, SYK Models and SYK-like Tensor Models with Global Symmetry, JHEP 10 (2017) 183 [arXiv:1707.01740] [INSPIRE].
  23. [23]
    K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].
  24. [24]
    D.J. Gross and V. Rosenhaus, A line of CFTs: from generalized free fields to SYK, JHEP 07 (2017) 086 [arXiv:1706.07015] [INSPIRE].
  25. [25]
    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].
  26. [26]
    C. Krishnan, K.V. Pavan Kumar and D. Rosa, Contrasting SYK-like Models, JHEP 01 (2018) 064 [arXiv:1709.06498] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Bhattacharya, S. Chakrabarti, D.P. Jatkar and A. Kundu, SYK Model, Chaos and Conserved Charge, JHEP 11 (2017) 180 [arXiv:1709.07613] [INSPIRE].
  28. [28]
    S. Förste, J. Kames-King and M. Wiesner, Towards the Holographic Dual of N = 2 SYK, JHEP 03 (2018) 028 [arXiv:1712.07398] [INSPIRE].
  29. [29]
    A. Goel, H.T. Lam, G.J. Turiaci and H. Verlinde, Expanding the Black Hole Interior: Partially Entangled Thermal States in SYK, JHEP 02 (2019) 156 [arXiv:1807.03916] [INSPIRE].
  30. [30]
    C.-M. Chang, S. Colin-Ellerin and M. Rangamani, On Melonic Supertensor Models, JHEP 10 (2018) 157 [arXiv:1806.09903] [INSPIRE].
  31. [31]
    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian TheoryA Wilson Line Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].
  32. [32]
    T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].
  33. [33]
    D.V. Khveshchenko, Thickening and sickening the SYK model, SciPost Phys. 5 (2018) 012 [arXiv:1705.03956] [INSPIRE].
  34. [34]
    R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
  35. [35]
    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. 126B (1983) 41 [INSPIRE].
  36. [36]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  37. [37]
    P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi and V. Vishal, On the Dynamics of Near-Extremal Black Holes, JHEP 09 (2018) 048 [arXiv:1802.09547] [INSPIRE].
  38. [38]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS 2 Black Holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].
  39. [39]
    A. Castro and W. Song, Comments on AdS 2 Gravity, arXiv:1411.1948 [INSPIRE].
  40. [40]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  41. [41]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  42. [42]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
  43. [43]
    A. Almheiri and B. Kang, Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].
  44. [44]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  45. [45]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].
  46. [46]
    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].
  47. [47]
    S. Förste and I. Golla, Nearly AdS 2 SUGRA and the super-Schwarzian, Phys. Lett. B 771 (2017) 157 [arXiv:1703.10969] [INSPIRE].
  48. [48]
    S.R. Das, A. Jevicki and K. Suzuki, Three Dimensional View of the SYK/AdS Duality, JHEP 09 (2017) 017 [arXiv:1704.07208] [INSPIRE].
  49. [49]
    H. Kyono, S. Okumura and K. Yoshida, Comments on 2D dilaton gravity system with a hyperbolic dilaton potential, Nucl. Phys. B 923 (2017) 126 [arXiv:1704.07410] [INSPIRE].
  50. [50]
    C. Eling, Holography and AdS 2 gravity with a dynamical aether, JHEP 07 (2017) 147 [arXiv:1705.04334] [INSPIRE].
  51. [51]
    S. Dartois, H. Erbin and S. Mondal, Conformality of 1/N corrections in SYK-like models, arXiv:1706.00412 [INSPIRE].
  52. [52]
    C. Krishnan and K.V.P. Kumar, Towards a Finite-N Hologram, JHEP 10 (2017) 099 [arXiv:1706.05364] [INSPIRE].
  53. [53]
    S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS 2 holography and \( T\overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].
  54. [54]
    M. Taylor, Generalized conformal structure, dilaton gravity and SYK, JHEP 01 (2018) 010 [arXiv:1706.07812] [INSPIRE].
  55. [55]
    D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS 2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].
  56. [56]
    J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev. Lett. 120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].
  57. [57]
    S.-K. Jian, Z.-Y. Xian and H. Yao, Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS 2 chain, Phys. Rev. B 97 (2018) 205141 [arXiv:1709.02810] [INSPIRE].
  58. [58]
    R.-G. Cai, S.-M. Ruan, R.-Q. Yang and Y.-L. Zhang, The String Worldsheet as the Holographic Dual of SYK State, arXiv:1709.06297 [INSPIRE].
  59. [59]
    N. Halmagyi and S. Mondal, Tensor Models for Black Hole Probes, arXiv:1711.04385 [INSPIRE].
  60. [60]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].
  61. [61]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Three Dimensional View of Arbitrary q SYK models, JHEP 02 (2018) 162 [arXiv:1711.09839] [INSPIRE].
  62. [62]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Space-Time in the SYK Model, JHEP 07 (2018) 184 [arXiv:1712.02725] [INSPIRE].
  63. [63]
    F.M. Haehl and M. Rozali, Fine Grained Chaos in AdS 2 Gravity, Phys. Rev. Lett. 120 (2018) 121601 [arXiv:1712.04963] [INSPIRE].
  64. [64]
    T.G. Mertens, The Schwarzian theoryorigins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].
  65. [65]
    A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS 2 /nCFT 1 correspondence, JHEP 10 (2018) 042 [arXiv:1807.06988] [INSPIRE].
  66. [66]
    A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D Gravity and Chern-Simons, arXiv:1802.07746 [INSPIRE].
  67. [67]
    H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian Quantum Mechanics, JHEP 11 (2018) 182 [arXiv:1804.09834] [INSPIRE].
  68. [68]
    Y.-Z. Li, S.-L. Li and H. Lü, Exact Embeddings of JT Gravity in Strings and M-theory, Eur. Phys. J. C 78 (2018) 791 [arXiv:1804.09742] [INSPIRE].
  69. [69]
    D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, arXiv:1804.01081 [INSPIRE].
  70. [70]
    K.S. Kolekar and K. Narayan, AdS 2 dilaton gravity from reductions of some nonrelativistic theories, Phys. Rev. D 98 (2018) 046012 [arXiv:1803.06827] [INSPIRE].
  71. [71]
    S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [INSPIRE].
  72. [72]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].
  73. [73]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].
  74. [74]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].
  75. [75]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].
  76. [76]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].
  77. [77]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Deviations from the area law for supersymmetric black holes, Fortsch. Phys. 48 (2000) 49 [hep-th/9904005] [INSPIRE].
  78. [78]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Macroscopic entropy formulae and nonholomorphic corrections for supersymmetric black holes, Nucl. Phys. B 567 (2000) 87 [hep-th/9906094] [INSPIRE].
  79. [79]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [INSPIRE].
  80. [80]
    H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].
  81. [81]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].
  82. [82]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].
  83. [83]
    R. Kallosh, New attractors, JHEP 12 (2005) 022 [hep-th/0510024] [INSPIRE].
  84. [84]
    D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav. 40 (2008) 2069 [hep-th/0611140] [INSPIRE].
  85. [85]
    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].
  86. [86]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].
  87. [87]
    R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS black hole attractor equation, JHEP 03 (2006) 060 [hep-th/0602005] [INSPIRE].
  88. [88]
    M. Alishahiha and H. Ebrahim, Non-supersymmetric attractors and entropy function, JHEP 03 (2006) 003 [hep-th/0601016] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations