Advertisement

Exploring inert scalars at CLIC

  • Jan Kalinowski
  • Wojciech Kotlarski
  • Tania RobensEmail author
  • Dorota Sokolowska
  • Aleksander Filip Żarnecki
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We investigate the prospect of discovering the Inert Doublet Model scalars at CLIC. As signal processes, we consider the pair-production of inert scalars, namely e+eH+H and e+eAH, followed by decays of charged scalars H± and neutral scalars A into leptonic final states and missing transverse energy. We focus on signal signatures with two muons or an electron and a muon pair in the final state. A number of selected benchmark scenarios that cover the range of possible collider signatures of the IDM are considered. For the suppression of SM background with the same visible signature, multivariate analysis methods are employed. For several bench-mark points discovery is already possible at the low-energy stage of CLIC. Prospects of investigating scenarios that are only accessible at higher collider energies are also discussed.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  2. [2]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].ADSGoogle Scholar
  3. [3]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  4. [4]
    J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Żarnecki, Benchmarking the Inert Doublet Model for e + e colliders, JHEP 12 (2018) 081 [arXiv:1809.07712] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
  6. [6]
    E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].ADSGoogle Scholar
  7. [7]
    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton Signals in the Inert Doublet Model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE].ADSGoogle Scholar
  8. [8]
    E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].ADSGoogle Scholar
  9. [9]
    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    X. Miao, S. Su and B. Thomas, Trilepton Signals in the Inert Doublet Model, Phys. Rev. D 82 (2010) 035009 [arXiv:1005.0090] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Swiezewska and M. Krawczyk, Diphoton rate in the inert doublet model with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Aoki, S. Kanemura and H. Yokoya, Reconstruction of Inert Doublet Scalars at the International Linear Collider, Phys. Lett. B 725 (2013) 302 [arXiv:1303.6191] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.-Y. Ho and J. Tandean, Probing Scotogenic Effects in e + e Colliders, Phys. Rev. D 89 (2014) 114025 [arXiv:1312.0931] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An Updated Analysis of Inert Higgs Doublet Model in light of the Recent Results from LUX, PLANCK, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Krawczyk, D. Sokolowska, P. Swaczyna and B. Swiezewska, Constraining Inert Dark Matter by R γγ and WMAP data, JHEP 09 (2013) 055 [arXiv:1305.6266] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Goudelis, B. Herrmann and O. Stal, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].
  19. [19]
    I.F. Ginzburg, Measuring mass and spin of Dark Matter particles with the aid energy spectra of single lepton and dijet at the e + e Linear Collider, J. Mod. Phys. 5 (2014) 1036 [arXiv:1410.0869] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    G. Bélanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC, Phys. Rev. D 91 (2015) 115011 [arXiv:1503.07367] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Blinov, J. Kozaczuk, D.E. Morrissey and A. de la Puente, Compressing the Inert Doublet Model, Phys. Rev. D 93 (2016) 035020 [arXiv:1510.08069] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Arhrib, R. Benbrik, J. El Falaki and A. Jueid, Radiative corrections to the Triple Higgs Coupling in the Inert Higgs Doublet Model, JHEP 12 (2015) 007 [arXiv:1507.03630] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Ilnicka, M. Krawczyk and T. Robens, Inert Doublet Model in light of LHC Run I and astrophysical data, Phys. Rev. D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Poulose, S. Sahoo and K. Sridhar, Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC, Phys. Lett. B 765 (2017) 300 [arXiv:1604.03045] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Datta, N. Ganguly, N. Khan and S. Rakshit, Exploring collider signatures of the inert Higgs doublet model, Phys. Rev. D 95 (2017) 015017 [arXiv:1610.00648] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Kanemura, M. Kikuchi and K. Sakurai, Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings, Phys. Rev. D 94 (2016) 115011 [arXiv:1605.08520] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A.G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, Eur. Phys. J. C 77 (2017) 276 [arXiv:1607.01320] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Wan et al., Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC, Commun. Theor. Phys. 69 (2018) 617 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Ilnicka, T. Robens and T. Stefaniak, Constraining Extended Scalar Sectors at the LHC and beyond, Mod. Phys. Lett. A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Belyaev et al., Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal, Phys. Rev. D 99 (2019) 015011 [arXiv:1809.00933] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999) 89 [hep-ph/9811234] [INSPIRE].
  32. [32]
    I.F. Ginzburg, K.A. Kanishev, M. Krawczyk and D. Sokolowska, Evolution of Universe to the present inert phase, Phys. Rev. D 82 (2010) 123533 [arXiv:1009.4593] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
  35. [35]
    Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  36. [36]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  39. [39]
    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].
  40. [40]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  41. [41]
    A. Pierce and J. Thaler, Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale, JHEP 08 (2007) 026 [hep-ph/0703056] [INSPIRE].
  42. [42]
    D. Dercks and T. Robens, Constraining the Inert Doublet Model using Vector Boson Fusion, arXiv:1812.07913 [INSPIRE].
  43. [43]
    J. Heisig, S. Kraml and A. Lessa, Constraining new physics with searches for long-lived particles: Implementation into SModelS, Phys. Lett. B 788 (2019) 87 [arXiv:1808.05229] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Measurements of the Higgs boson width and anomalous HV V couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].
  45. [45]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s} \) = 7, 8 and 13TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
  46. [46]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  47. [47]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  49. [49]
    P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED2012) 024 (2012) [arXiv:1301.2345] [INSPIRE].
  50. [50]
    P. Bechtle et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  55. [55]
    C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the Inert Doublet Dark Matter Model with Cherenkov Telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  57. [57]
    M. Klasen, C.E. Yaguna and J.D. Ruiz-Alvarez, Electroweak corrections to the direct detection cross section of inert Higgs dark matter, Phys. Rev. D 87 (2013) 075025 [arXiv:1302.1657] [INSPIRE].ADSGoogle Scholar
  58. [58]
    IceCube collaboration, Search for annihilating dark matter in the Sun with 3 years of IceCube data, Eur. Phys. J. C 77 (2017) 146 [Erratum ibid. C 79 (2019) 214] [arXiv:1612.05949] [INSPIRE].
  59. [59]
    MAGIC and Fermi-LAT collaborations, Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  60. [60]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
  62. [62]
    B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE].ADSGoogle Scholar
  63. [63]
    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
  64. [64]
    J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Żarnecki, IDM benchmarks for the LHC at 13 and 27 TeV, Submitted to the Higgs Cross Section Working Group, October 2018.Google Scholar
  65. [65]
    T. Robens, IDM benchmarks for the LHC at 13 and 27 TeV, talk at The Higgs Cross Section Working Group Wg3 Subgroup Meeting, 24 October 2018 [https://indico.cern.ch/event/767041/].
  66. [66]
    F. Zimmermann et al., Future Circular Collider, CERN-ACC-2018-0059.
  67. [67]
    M. Moretti, T. Ohl and J. Reuter, OMega: An Optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
  68. [68]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  70. [70]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  71. [71]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  72. [72]
    L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and Detectors at CLIC: CLIC Conceptual Design Report, arXiv:1202.5940 [INSPIRE].
  73. [73]
    A. Hocker et al., TMVAToolkit for Multivariate Data Analysis, physics/0703039 [INSPIRE].
  74. [74]
    A. Robson and P. Roloff, Updated CLIC luminosity staging baseline and Higgs coupling prospects, arXiv:1812.01644 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarszawaPoland
  2. 2.Institut für Kern- und TeilchenphysikTU DresdenDresdenGermany
  3. 3.MTA-DE Particle Physics Research GroupUniversity of DebrecenDebrecenHungary
  4. 4.Theoretical Physics DivisionRudjer Boskovic InstituteZagrebCroatia
  5. 5.International Institute of PhysicsUniversidade Federal do Rio Grande do Norte, Campus UniversitarioNatalBrazil

Personalised recommendations