# Light fermionic WIMP dark matter with light scalar mediator

- 15 Downloads

## Abstract

A light fermionic weakly interacting massive particle (WIMP) dark matter is investigated by studying its minimal renormalizable model, where it requires a scalar mediator to have an interaction between the WIMP and standard model particles. We perform a comprehensive likelihood analysis of the model involving the latest but robust constraints and those will be obtained in the near future. In addition, we pay particular attention to properly take the kinematically equilibrium condition into account. It is shown that near-future experiments and observations such as low-mass direct dark matter detections, flavor experiments and CMB observations play important roles to test the model. Still, a wide parameter region will remain even if no WIMP and mediator signals are detected there. We also show that precise Higgs boson measurements at future lepton colliders will significantly test this remaining region.

## Keywords

Beyond Standard Model Cosmology of Theories beyond the SM## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner,
*Observables in low-energy superstring models*,*Mod. Phys. Lett.***A 1**(1986) 57 [INSPIRE].ADSGoogle Scholar - [2]R. Barbieri and G.F. Giudice,
*Upper bounds on supersymmetric particle masses*,*Nucl. Phys.***B 306**(1988) 63 [INSPIRE].ADSGoogle Scholar - [3]J. Bernstein, L.S. Brown and G. Feinberg,
*The cosmological heavy neutrino problem revisited*,*Phys. Rev.***D 32**(1985) 3261 [INSPIRE].ADSGoogle Scholar - [4]M. Srednicki, R. Watkins and K.A. Olive,
*Calculations of relic densities in the early universe*,*Nucl. Phys.***B 310**(1988) 693 [INSPIRE].ADSGoogle Scholar - [5]C. Boehm, T.A. Ensslin and J. Silk,
*Can annihilating dark matter be lighter than a few GeVs?*,*J. Phys.***G 30**(2004) 279 [astro-ph/0208458] [INSPIRE]. - [6]C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul,
*MeV dark matter: has it been detected?*,*Phys. Rev. Lett.***92**(2004) 101301 [astro-ph/0309686] [INSPIRE]. - [7]H. Murayama and J. Shu,
*Topological dark matter*,*Phys. Lett.***B 686**(2010) 162 [arXiv:0905.1720] [INSPIRE].ADSGoogle Scholar - [8]T. Hambye and M.H.G. Tytgat,
*Confined hidden vector dark matter*,*Phys. Lett.***B 683**(2010) 39 [arXiv:0907.1007] [INSPIRE].ADSGoogle Scholar - [9]K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida,
*Low-scale gauge mediation and composite messenger dark matter*,*JHEP***04**(2010) 119 [arXiv:0912.1683] [INSPIRE].ADSzbMATHGoogle Scholar - [10]O. Antipin, M. Redi and A. Strumia,
*Dynamical generation of the weak and dark matter scales from strong interactions*,*JHEP***01**(2015) 157 [arXiv:1410.1817] [INSPIRE].ADSGoogle Scholar - [11]O. Antipin, M. Redi, A. Strumia and E. Vigiani,
*Accidental composite dark matter*,*JHEP***07**(2015) 039 [arXiv:1503.08749] [INSPIRE].ADSGoogle Scholar - [12]R. Huo, S. Matsumoto, Y.-L. Sming Tsai and T.T. Yanagida,
*A scenario of heavy but visible baryonic dark matter*,*JHEP***09**(2016) 162 [arXiv:1506.06929] [INSPIRE].ADSGoogle Scholar - [13]S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada,
*Can WIMP dark matter overcome the nightmare scenario?*,*Phys. Rev.***D 82**(2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar - [14]L. Lopez-Honorez, T. Schwetz and J. Zupan,
*Higgs portal, fermionic dark matter and a Standard Model like Higgs at*125*GeV*,*Phys. Lett.***B 716**(2012) 179 [arXiv:1203.2064] [INSPIRE].ADSGoogle Scholar - [15]A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon,
*Direct detection of Higgs-portal dark matter at the LHC*,*Eur. Phys. J.***C 73**(2013) 2455 [arXiv:1205.3169] [INSPIRE].ADSGoogle Scholar - [16]K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee,
*Global study of the simplest scalar phantom dark matter model*,*JCAP***10**(2012) 042 [arXiv:1207.4930] [INSPIRE].ADSGoogle Scholar - [17]A. Falkowski, C. Gross and O. Lebedev,
*A second Higgs from the Higgs portal*,*JHEP***05**(2015) 057 [arXiv:1502.01361] [INSPIRE].ADSGoogle Scholar - [18]V. Barger, M. McCaskey and G. Shaughnessy,
*Complex scalar dark matter vis-à-vis CoGeNT, DAMA/LIBRA and XENON*100,*Phys. Rev.***D 82**(2010) 035019 [arXiv:1005.3328] [INSPIRE].ADSGoogle Scholar - [19]M. Gonderinger, H. Lim and M.J. Ramsey-Musolf,
*Complex scalar singlet dark matter: vacuum stability and phenomenology*,*Phys. Rev.***D 86**(2012) 043511 [arXiv:1202.1316] [INSPIRE].ADSGoogle Scholar - [20]M. Vogelsberger, J. Zavala and A. Loeb,
*Subhaloes in self-interacting galactic dark matter haloes*,*Mon. Not. Roy. Astron. Soc.***423**(2012) 3740 [arXiv:1201.5892] [INSPIRE].ADSGoogle Scholar - [21]M. Rocha et al.,
*Cosmological simulations with self-interacting dark matter I: constant density cores and substructure*,*Mon. Not. Roy. Astron. Soc.***430**(2013) 81 [arXiv:1208.3025] [INSPIRE].ADSGoogle Scholar - [22]A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat,
*Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations*,*Mon. Not. Roy. Astron. Soc.***430**(2013) 105 [arXiv:1208.3026] [INSPIRE]. - [23]M. Pospelov, A. Ritz and M.B. Voloshin,
*Secluded WIMP dark matter*,*Phys. Lett.***B 662**(2008) 53 [arXiv:0711.4866] [INSPIRE].ADSGoogle Scholar - [24]M. Pospelov and A. Ritz,
*Astrophysical signatures of secluded dark matter*,*Phys. Lett.***B 671**(2009) 391 [arXiv:0810.1502] [INSPIRE].ADSGoogle Scholar - [25]O. Bertolami and R. Rosenfeld,
*The Higgs portal and an unified model for dark energy and dark matter*,*Int. J. Mod. Phys.***A 23**(2008) 4817 [arXiv:0708.1784] [INSPIRE].ADSzbMATHGoogle Scholar - [26]S. Matsumoto et al.,
*Observing the coupling between dark matter and Higgs boson at the ILC*, in*International Linear Collider Workshop (LCWS*10*and ILC*10*)*, Beijing, China, 26–30 March 2010 [arXiv:1006.5268] [INSPIRE]. - [27]S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi,
*Testing Higgs portal dark matter via Z fusion at a linear collider*,*Phys. Lett.***B 701**(2011) 591 [arXiv:1102.5147] [INSPIRE].ADSGoogle Scholar - [28]A. Kamada, M. Yamada and T.T. Yanagida,
*Self-interacting dark matter with a vector mediator: kinetic mixing with the*\( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \)*gauge boson*,*JHEP***03**(2019) 021 [arXiv:1811.02567] [INSPIRE]. - [29]A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu,
*Self-interacting dark matter and muon g*− 2*in a gauged*\( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \)*model*,*JHEP***06**(2018) 117 [arXiv:1805.00651] [INSPIRE]. - [30]
- [31]Y.G. Kim and K.Y. Lee,
*The minimal model of fermionic dark matter*,*Phys. Rev.***D 75**(2007) 115012 [hep-ph/0611069] [INSPIRE]. - [32]A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon,
*Implications of LHC searches for Higgs-portal dark matter*,*Phys. Lett.***B 709**(2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar - [33]M. Pospelov and A. Ritz,
*Higgs decays to dark matter: beyond the minimal model*,*Phys. Rev.***D 84**(2011) 113001 [arXiv:1109.4872] [INSPIRE].ADSGoogle Scholar - [34]S. Baek, P. Ko and W.-I. Park,
*Search for the Higgs portal to a singlet fermionic dark matter at the LHC*,*JHEP***02**(2012) 047 [arXiv:1112.1847] [INSPIRE].ADSGoogle Scholar - [35]S. Esch, M. Klasen and C.E. Yaguna,
*Detection prospects of singlet fermionic dark matter*,*Phys. Rev.***D 88**(2013) 075017 [arXiv:1308.0951] [INSPIRE].ADSGoogle Scholar - [36]K. Ghorbani,
*Fermionic dark matter with pseudo-scalar Yukawa interaction*,*JCAP***01**(2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetGoogle Scholar - [37]A. Freitas, S. Westhoff and J. Zupan,
*Integrating in the Higgs portal to fermion dark matter*,*JHEP***09**(2015) 015 [arXiv:1506.04149] [INSPIRE].Google Scholar - [38]M. Dutra, C.A. de S. Pires and P.S. Rodrigues da Silva,
*Majorana dark matter through a narrow Higgs portal*,*JHEP***09**(2015) 147 [arXiv:1504.07222] [INSPIRE]. - [39]K. Ghorbani and L. Khalkhali,
*Mono-Higgs signature in a fermionic dark matter model*,*J. Phys.***G 44**(2017) 105004 [arXiv:1608.04559] [INSPIRE].ADSGoogle Scholar - [40]A. Beniwal, M. Lewicki, M. White and A.G. Williams,
*Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model*,*JHEP***02**(2019) 183 [arXiv:1810.02380] [INSPIRE].ADSGoogle Scholar - [41]A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura,
*SIMP from a strong*U(1)*gauge theory with a monopole condensation*,*Phys. Rev.***D 94**(2016) 055035 [arXiv:1606.01628] [INSPIRE].ADSGoogle Scholar - [42]J.A. Evans, S. Gori and J. Shelton,
*Looking for the WIMP next door*,*JHEP***02**(2018) 100 [arXiv:1712.03974] [INSPIRE].ADSGoogle Scholar - [43]The GAMBIT Dark Matter Workgroup collaboration,
*DarkBit: a GAMBIT module for computing dark matter observables and likelihoods*,*Eur. Phys. J.***C 77**(2017) 831 [arXiv:1705.07920] [INSPIRE]. - [44]GAMBIT collaboration,
*Status of the scalar singlet dark matter model*,*Eur. Phys. J.***C 77**(2017) 568 [arXiv:1705.07931] [INSPIRE]. - [45]GAMBIT collaboration,
*Global analyses of Higgs portal singlet dark matter models using GAMBIT*,*Eur. Phys. J.***C 79**(2019) 38 [arXiv:1808.10465] [INSPIRE]. - [46]GAMBIT collaboration,
*Global fits of GUT-scale SUSY models with GAMBIT*,*Eur. Phys. J.***C 77**(2017) 824 [arXiv:1705.07935] [INSPIRE]. - [47]GAMBIT collaboration,
*A global fit of the MSSM with GAMBIT*,*Eur. Phys. J.***C 77**(2017) 879 [arXiv:1705.07917] [INSPIRE]. - [48]P. Athron, J.M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild,
*Impact of vacuum stability, perturbativity and XENON*1*T on global fits of Z*_{2}*and Z*_{3}*scalar singlet dark matter*,*Eur. Phys. J.***C 78**(2018) 830 [arXiv:1806.11281] [INSPIRE].ADSGoogle Scholar - [49]S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai,
*WIMP dark matter in a well-tempered regime: a case study on singlet-doublets fermionic WIMP*,*JHEP***11**(2016) 070 [arXiv:1603.07387] [INSPIRE].ADSGoogle Scholar - [50]S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai,
*Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory*,*JHEP***10**(2014) 155 [arXiv:1407.1859] [INSPIRE].ADSGoogle Scholar - [51]S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai,
*Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case*,*Phys. Rev.***D 94**(2016) 065034 [arXiv:1604.02230] [INSPIRE].ADSGoogle Scholar - [52]G. Krnjaic,
*Probing light thermal dark-matter with a Higgs portal mediator*,*Phys. Rev.***D 94**(2016) 073009 [arXiv:1512.04119] [INSPIRE].ADSGoogle Scholar - [53]H. Leutwyler and M.A. Shifman,
*Goldstone bosons generate peculiar conformal anomalies*,*Phys. Lett.***B 221**(1989) 384 [INSPIRE].ADSGoogle Scholar - [54]A. Djouadi, J. Kalinowski and M. Spira,
*HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension*,*Comput. Phys. Commun.***108**(1998) 56 [hep-ph/9704448] [INSPIRE]. - [55]J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson,
*The Higgs hunter*’*s guide*,*Front. Phys.***80**(2000) 1 [INSPIRE].Google Scholar - [56]J.F. Donoghue, J. Gasser and H. Leutwyler,
*The decay of a light Higgs boson*,*Nucl. Phys.***B 343**(1990) 341 [INSPIRE].ADSGoogle Scholar - [57]M.W. Winkler,
*Decay and detection of a light scalar boson mixing with the Higgs boson*,*Phys. Rev.***D 99**(2019) 015018 [arXiv:1809.01876] [INSPIRE].ADSGoogle Scholar - [58]J.D. Clarke, R. Foot and R.R. Volkas,
*Phenomenology of a very light scalar*(100 MeV*< m*_{h}*<*10 GeV)*mixing with the SM Higgs*,*JHEP***02**(2014) 123 [arXiv:1310.8042] [INSPIRE]. - [59]E. Duchovni, E. Gross and G. Mikenberg,
*Motivation and technique for light Higgs boson search*,*Phys. Rev.***D 39**(1989) 365 [INSPIRE].ADSGoogle Scholar - [60]T.N. Truong and R.S. Willey,
*Branching ratios for decays of light Higgs bosons*,*Phys. Rev.***D 40**(1989) 3635 [INSPIRE].ADSGoogle Scholar - [61]T.R. Slatyer,
*Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results*,*Phys. Rev.***D 93**(2016) 023527 [arXiv:1506.03811] [INSPIRE]. - [62]ATLAS and CMS collaborations,
*Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at*\( \sqrt{s} \) = 7*and*8*TeV*,*JHEP***08**(2016) 045 [arXiv:1606.02266] [INSPIRE]. - [63]Planck collaboration,
*Planck*2015*results VII. High frequency instrument data processing: time-ordered information and beams*,*Astron. Astrophys.***594**(2016) A7 [arXiv:1502.01586] [INSPIRE]. - [64]XENON collaboration,
*Dark matter search results from a one ton-year exposure of XENON*1*T*,*Phys. Rev. Lett.***121**(2018) 111302 [arXiv:1805.12562] [INSPIRE]. - [65]CRESST collaboration,
*First results on low-mass dark matter from the CRESST-III experiment*, in 15^{th}*International Conference on Topics in Astroparticle and Underground Physics (TAUP*2017*)*, Sudbury, ON, Canada, 24–28 July 2017 [arXiv:1711.07692] [INSPIRE]. - [66]G. Gerbier et al.,
*NEWS: a new spherical gas detector for very low mass WIMP detection*, arXiv:1401.7902 [INSPIRE]. - [67]
*NEWS-G collaboration webpage*, https://news-g.org/. - [68]PandaX-II collaboration,
*Dark matter results from first*98*.*7*days of data from the PandaX-II experiment*,*Phys. Rev. Lett.***117**(2016) 121303 [arXiv:1607.07400] [INSPIRE]. - [69]SuperCDMS collaboration,
*New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment*,*Phys. Rev. Lett.***116**(2016) 071301 [arXiv:1509.02448] [INSPIRE]. - [70]SuperCDMS collaboration,
*Projected sensitivity of the SuperCDMS SNOLAB experiment*,*Phys. Rev.***D 95**(2017) 082002 [arXiv:1610.00006] [INSPIRE]. - [71]NEWS-G collaboration,
*First results from the NEWS-G direct dark matter search experiment at the LSM*,*Astropart. Phys.***97**(2018) 54 [arXiv:1706.04934] [INSPIRE]. - [72]DarkSide collaboration,
*Low-mass dark matter search with the DarkSide-*50*experiment*,*Phys. Rev. Lett.***121**(2018) 081307 [arXiv:1802.06994] [INSPIRE]. - [73]
- [74]LUX, LZ collaboration,
*The present and future of searching for dark matter with LUX and LZ*, PoS(ICHEP2016)220 (2016) [arXiv:1611.05525] [INSPIRE]. - [75]Planck collaboration,
*Planck*2013*results. XVI. Cosmological parameters*,*Astron. Astrophys.***571**(2014) A16 [arXiv:1303.5076] [INSPIRE]. - [76]
- [77]G. Bélanger, F. Boudjema and A. Pukhov,
*MicrOMEGAs: a code for the calculation of dark matter properties in generic models of particle interaction*, in*The Dark Secrets of the Terascale: proceedings, TASI*2011, Boulder, CO, U.S.A., 6 June–11 July 2011, World Scientific, Singapore (2013), pg. 739 [arXiv:1402.0787] [INSPIRE]. - [78]M. Drees, F. Hajkarim and E.R. Schmitz,
*The effects of QCD equation of state on the relic density of WIMP dark matter*,*JCAP***06**(2015) 025 [arXiv:1503.03513] [INSPIRE].ADSGoogle Scholar - [79]J. Hisano, S. Matsumoto and M.M. Nojiri,
*Explosive dark matter annihilation*,*Phys. Rev. Lett.***92**(2004) 031303 [hep-ph/0307216] [INSPIRE]. - [80]J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito,
*Non-perturbative effect on dark matter annihilation and γ ray signature from galactic center*,*Phys. Rev.***D 71**(2005) 063528 [hep-ph/0412403] [INSPIRE]. - [81]J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami,
*Non-perturbative effect on thermal relic abundance of dark matter*,*Phys. Lett.***B 646**(2007) 34 [hep-ph/0610249] [INSPIRE]. - [82]S. Tulin, H.-B. Yu and K.M. Zurek,
*Resonant dark forces and small scale structure*,*Phys. Rev. Lett.***110**(2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSGoogle Scholar - [83]S. Tulin, H.-B. Yu and K.M. Zurek,
*Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure*,*Phys. Rev.***D 87**(2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar - [84]M. Kaplinghat, S. Tulin and H.-B. Yu,
*Direct detection portals for self-interacting dark matter*,*Phys. Rev.***D 89**(2014) 035009 [arXiv:1310.7945] [INSPIRE].ADSGoogle Scholar - [85]K. Kainulainen, K. Tuominen and V. Vaskonen,
*Self-interacting dark matter and cosmology of a light scalar mediator*,*Phys. Rev.***D 93**(2016) 015016 [*Erratum ibid.***D 95**(2017) 079901] [arXiv:1507.04931] [INSPIRE]. - [86]F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild,
*Dark matter self-interactions from a general spin-*0*mediator*,*JCAP***08**(2017) 003 [arXiv:1704.02149] [INSPIRE].ADSGoogle Scholar - [87]T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk,
*Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails*,*Phys. Rev.***D 96**(2017) 115010 [arXiv:1706.07433] [INSPIRE].ADSGoogle Scholar - [88]PandaX-II collaboration,
*Dark matter results from*54*-ton-day exposure of PandaX-II experiment*,*Phys. Rev. Lett.***119**(2017) 181302 [arXiv:1708.06917] [INSPIRE]. - [89]Z. Liu, Y. Su, Y.-L. Sming Tsai, B. Yu and Q. Yuan,
*A combined analysis of PandaX, LUX and XENON*1*T experiments within the framework of dark matter effective theory*,*JHEP***11**(2017) 024 [arXiv:1708.04630] [INSPIRE].ADSGoogle Scholar - [90]
- [91]M. Ibe, A. Kamada, S. Kobayashi and W. Nakano,
*Composite asymmetric dark matter with a dark photon portal*,*JHEP***11**(2018) 203 [arXiv:1805.06876] [INSPIRE].ADSGoogle Scholar - [92]
- [93]J. Berger, K. Jedamzik and D.G.E. Walker,
*Cosmological constraints on decoupled dark photons and dark Higgs*,*JCAP***11**(2016) 032 [arXiv:1605.07195] [INSPIRE].ADSGoogle Scholar - [94]M. Hufnagel, K. Schmidt-Hoberg and S. Wild,
*BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays*,*JCAP***11**(2018) 032 [arXiv:1808.09324] [INSPIRE]. - [95]A. Fradette and M. Pospelov,
*BBN for the LHC: constraints on lifetimes of the Higgs portal scalars*,*Phys. Rev.***D 96**(2017) 075033 [arXiv:1706.01920] [INSPIRE].ADSGoogle Scholar - [96]W. Hu and J. Silk,
*Thermalization and spectral distortions of the cosmic background radiation*,*Phys. Rev.***D 48**(1993) 485 [INSPIRE].ADSGoogle Scholar - [97]E. Masso and R. Toldra,
*New constraints on a light spinless particle coupled to photons*,*Phys. Rev.***D 55**(1997) 7967 [hep-ph/9702275] [INSPIRE]. - [98]Kamiokande-II collaboration,
*Observation of a neutrino burst from the supernova SN*1987*A*,*Phys. Rev. Lett.***58**(1987) 1490 [INSPIRE]. - [99]J.H. Chang, R. Essig and S.D. McDermott,
*Revisiting supernova*1987*A constraints on dark photons*,*JHEP***01**(2017) 107 [arXiv:1611.03864] [INSPIRE].ADSzbMATHGoogle Scholar - [100]J.H. Chang, R. Essig and S.D. McDermott,
*Supernova*1987*A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion and an axion-like particle*,*JHEP***09**(2018) 051 [arXiv:1803.00993] [INSPIRE].ADSGoogle Scholar - [101]C. Mahoney, A.K. Leibovich and A.R. Zentner,
*Updated constraints on self-interacting dark matter from supernova*1987*A*,*Phys. Rev.***D 96**(2017) 043018 [arXiv:1706.08871] [INSPIRE].ADSGoogle Scholar - [102]T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez and A. Ringwald,
*Probing axions with the neutrino signal from the next galactic supernova*,*Phys. Rev.***D 94**(2016) 085012 [arXiv:1605.08780] [INSPIRE].ADSGoogle Scholar - [103]H. Tu and K.-W. Ng,
*Supernovae and Weinberg*’*s Higgs portal dark radiation and dark matter*,*JHEP***07**(2017) 108 [arXiv:1706.08340] [INSPIRE].ADSzbMATHGoogle Scholar - [104]A. Sung, H. Tu and M.-R. Wu,
*New constraint from supernova explosions on light particles beyond the Standard Model*,*Phys. Rev.***D 99**(2019) 121305 [arXiv:1903.07923] [INSPIRE].Google Scholar - [105]D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray and A.H.G. Peter,
*Cold dark matter: controversies on small scales*,*Proc. Nat. Acad. Sci.***112**(2015) 12249 [arXiv:1306.0913] [INSPIRE].ADSGoogle Scholar - [106]S. Tulin and H.-B. Yu,
*Dark matter self-interactions and small scale structure*,*Phys. Rept.***730**(2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [107]CLEO collaboration,
*Search for very light CP-odd Higgs boson in radiative decays of ϒ*(1*S*),*Phys. Rev. Lett.***101**(2008) 151802 [arXiv:0807.1427] [INSPIRE]. - [108]BaBar collaboration,
*Search for di-muon decays of a low-mass Higgs boson in radiative decays of the*ϒ(1*S*),*Phys. Rev.***D 87**(2013) 031102 [*Erratum ibid.***D 87**(2013) 059903] [arXiv:1210.0287] [INSPIRE]. - [109]BaBar collaboration,
*Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of*ϒ(1*S*),*Phys. Rev.***D 88**(2013) 071102 [arXiv:1210.5669] [INSPIRE]. - [110]Belle collaboration,
*Measurement of the differential branching fraction and forward-backword asymmetry for B*→*K*^{(*)}*ℓ*^{+}*ℓ*^{−},*Phys. Rev. Lett.***103**(2009) 171801 [arXiv:0904.0770] [INSPIRE]. - [111]Belle collaboration,
*Search for*\( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \)*decays at Belle*,*Phys. Rev. Lett.***99**(2007) 221802 [arXiv:0707.0138] [INSPIRE]. - [112]LHCb collaboration,
*Differential branching fraction and angular analysis of the B*^{+}→*K*^{+}*μ*^{+}*μ*^{−}*decay*,*JHEP***02**(2013) 105 [arXiv:1209.4284] [INSPIRE]. - [113]LHCb collaboration,
*Search for hidden-sector bosons in B*^{0}→*K*^{*0}*μ*^{+}*μ*^{−}*decays*,*Phys. Rev. Lett.***115**(2015) 161802 [arXiv:1508.04094] [INSPIRE]. - [114]LHCb collaboration,
*Search for long-lived scalar particles in B*^{+}→*K*^{+}*χ*(*μ*^{+}*μ*^{−})*decays*,*Phys. Rev.***D 95**(2017) 071101 [arXiv:1612.07818] [INSPIRE]. - [115]
- [116]E. Manoni,
*Studies of missing energy decays of B meson at Belle II*, presented at*EPS HEP*2017, Venice, Italy, July 2017.Google Scholar - [117]BaBar collaboration,
*Search for long-lived particles in e*^{+}*e*^{−}*collisions*,*Phys. Rev. Lett.***114**(2015) 171801 [arXiv:1502.02580] [INSPIRE]. - [118]BaBar collaboration,
*Direct CP, lepton flavor and isospin asymmetries in the decays B*→*K*^{(*)}*ℓ*^{+}*ℓ*^{−},*Phys. Rev. Lett.***102**(2009) 091803 [arXiv:0807.4119] [INSPIRE]. - [119]BaBar collaboration,
*Search for the rare decay*\( B\to K\nu \overline{\nu} \),*Phys. Rev.***D 82**(2010) 112002 [arXiv:1009.1529] [INSPIRE]. - [120]BaBar collaboration,
*Search for*\( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \)*and invisible quarkonium decays*,*Phys. Rev.***D 87**(2013) 112005 [arXiv:1303.7465] [INSPIRE]. - [121]J. Albrecht, F. Bernlochner, M. Kenzie, S. Reichert, D. Straub and A. Tully,
*Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb*, arXiv:1709.10308 [INSPIRE]. - [122]NA48/2 collaboration,
*New measurement of the K*^{±}→*π*^{±}*μ*^{+}*μ*^{−}*decay*,*Phys. Lett.***B 697**(2011) 107 [arXiv:1011.4817] [INSPIRE]. - [123]KTEV collaboration,
*Search for the decay K*_{L}→*π*^{0}*μ*^{+}*μ*^{−},*Phys. Rev. Lett.***84**(2000) 5279 [hep-ex/0001006] [INSPIRE]. - [124]KTeV collaboration,
*Search for the rare decay K*_{L}→*π*^{0}*e*^{+}*e*^{−},*Phys. Rev. Lett.***93**(2004) 021805 [hep-ex/0309072] [INSPIRE]. - [125]BNL-E949 collaboration,
*Study of the decay*\( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \)*in the momentum region*140*< P*_{π}*<*199*MeV/c*,*Phys. Rev.***D 79**(2009) 092004 [arXiv:0903.0030] [INSPIRE]. - [126]S. Martellotti,
*The NA*62*experiment at CERN*, in*Proceedings,*12^{th}*Conference on the Intersections of Particle and Nuclear Physics (CIPANP*2015*)*, Vail, CO, U.S.A., 19–24 May 2015 [arXiv:1510.00172] [INSPIRE]. - [127]NA62 collaboration,
*Results and perspectives from the NA*62*experiment at CERN*,*Nuovo Cim.***C 39**(2016) 322 [INSPIRE]. - [128]CHARM collaboration,
*Search for axion like particle production in*400*GeV proton-copper interactions*,*Phys. Lett.***B 157**(1985) 458 [INSPIRE]. - [129]F. Bezrukov and D. Gorbunov,
*Light inflaton hunter*’*s guide*,*JHEP***05**(2010) 010 [arXiv:0912.0390] [INSPIRE].ADSzbMATHGoogle Scholar - [130]E391a collaboration,
*Experimental study of the decay*\( {K}_L^0\to {\pi}^0\nu \overline{\nu} \),*Phys. Rev.***D 81**(2010) 072004 [arXiv:0911.4789] [INSPIRE]. - [131]S. Alekhin et al.,
*A facility to search for hidden particles at the CERN SPS: the SHiP physics case*,*Rept. Prog. Phys.***79**(2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSGoogle Scholar - [132]KOTO collaboration,
*Present status of the search for the*\( {K}_L^0\to {\pi}^0\nu \overline{\nu} \)*decay with the KOTO detector at J-PARC*, in*Proceedings, Meeting of the APS Division of Particles and Fields (DPF*2017*)*, Fermilab, Batavia, IL, U.S.A., 31 July–4 August 2017 [arXiv:1710.01412] [INSPIRE]. - [133]CMS collaboration,
*Search for light bosons in decays of the*125*GeV Higgs boson in proton-proton collisions at*\( \sqrt{s} \) = 8*TeV*,*JHEP***10**(2017) 076 [arXiv:1701.02032] [INSPIRE]. - [134]ATLAS collaboration,
*Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at*\( \sqrt{s} \) = 13*TeV*,*JHEP***06**(2018) 166 [arXiv:1802.03388] [INSPIRE]. - [135]J.D. Clarke,
*Constraining portals with displaced Higgs decay searches at the LHC*,*JHEP***10**(2015) 061 [arXiv:1505.00063] [INSPIRE].ADSGoogle Scholar - [136]K. Cheung, J.S. Lee and P.-Y. Tseng,
*Higgs precision analysis updates*2014,*Phys. Rev.***D 90**(2014) 095009 [arXiv:1407.8236] [INSPIRE].ADSGoogle Scholar - [137]CMS collaboration,
*Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process*, in*Proceedings,*2013*Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS*2013*)*, Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1307.7135] [INSPIRE]. - [138]P. Bechtle, S. Heinemeyer, O. St al, T. Stefaniak and G. Weiglein,
*Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC*,*JHEP***11**(2014) 039 [arXiv:1403.1582] [INSPIRE]. - [139]L3 collaboration,
*Search for neutral Higgs boson production through the process e*^{+}*e*^{−}→*Z*^{*}*H*^{0},*Phys. Lett.***B 385**(1996) 454 [INSPIRE]. - [140]Particle Data Group collaboration,
*Review of particle physics*,*Chin. Phys.***C 38**(2014) 090001 [INSPIRE]. - [141]M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg,
*A taste of dark matter: flavour constraints on pseudoscalar mediators*,*JHEP***03**(2015) 171 [*Erratum ibid.***07**(2015) 103] [arXiv:1412.5174] [INSPIRE]. - [142]A. Ali, E. Lunghi, C. Greub and G. Hiller,
*Improved model independent analysis of semileptonic and radiative rare B decays*,*Phys. Rev.***D 66**(2002) 034002 [hep-ph/0112300] [INSPIRE]. - [143]W.J. Marciano and Z. Parsa,
*Rare kaon decays with*“*missing energy*”,*Phys. Rev.***D 53**(1996) R1 [INSPIRE].ADSGoogle Scholar - [144]ATLAS collaboration,
*Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at*\( \sqrt{s} \) = 8*TeV with the ATLAS detector*,*JHEP***11**(2014) 088 [arXiv:1409.0746] [INSPIRE]. - [145]ALEPH collaboration,
*Search for a nonminimal Higgs boson produced in the reaction e*^{+}*e*^{−}→*hZ*^{*},*Phys. Lett.***B 313**(1993) 312 [INSPIRE]. - [146]OPAL collaboration,
*Decay mode independent searches for new scalar bosons with the OPAL detector at LEP*,*Eur. Phys. J.***C 27**(2003) 311 [hep-ex/0206022] [INSPIRE]. - [147]CMS collaboration,
*Measurements of inclusive and differential Z boson production cross sections in pp collisions at*\( \sqrt{s} \) = 13*TeV*, CMS-PAS-SMP-15-011, CERN, Geneva, Switzerland (2015). - [148]D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman,
*emcee: the MCMC hammer*,*Publ. Astron. Soc. Pac.***125**(2013) 306 [arXiv:1202.3665] [INSPIRE]. - [149]F. Feroz, M.P. Hobson and M. Bridges,
*MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics*,*Mon. Not. Roy. Astron. Soc.***398**(2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSGoogle Scholar - [150]K. Fujii et al.,
*Physics case for the*250*GeV stage of the International Linear Collider*, arXiv:1710.07621 [INSPIRE]. - [151]M. Ahmad et al.,
*CEPC-SPPC preliminary conceptual design report.*1*. Physics and detector*, IHEP-CEPC-DR-2015-01, (2015) [IHEP-TH-2015-01] [IHEP-EP-2015-01] [INSPIRE]. - [152]D. d’Enterria,
*Physics case of FCC-ee*,*Frascati Phys. Ser.***61**(2016) 17 [arXiv:1601.06640] [INSPIRE].Google Scholar - [153]C. Boehm, M.J. Dolan and C. McCabe,
*A lower bound on the mass of cold thermal dark matter from Planck*,*JCAP***08**(2013) 041 [arXiv:1303.6270] [INSPIRE].ADSGoogle Scholar - [154]P. Gondolo, J. Hisano and K. Kadota,
*The effect of quark interactions on dark matter kinetic decoupling and the mass of the smallest dark halos*,*Phys. Rev.***D 86**(2012) 083523 [arXiv:1205.1914] [INSPIRE].ADSGoogle Scholar - [155]T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi and N. Yoshida,
*Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term*,*JCAP***11**(2016) 043 [arXiv:1602.07624] [INSPIRE].ADSGoogle Scholar - [156]P. Gondolo and G. Gelmini,
*Cosmic abundances of stable particles: improved analysis*,*Nucl. Phys.***B 360**(1991) 145 [INSPIRE].ADSGoogle Scholar - [157]T. Bhattacharya et al.,
*QCD phase transition with chiral quarks and physical quark masses*,*Phys. Rev. Lett.***113**(2014) 082001 [arXiv:1402.5175] [INSPIRE].ADSGoogle Scholar