Advertisement

Chaos in three-dimensional higher spin gravity

  • Prithvi Narayan
  • Junggi YoonEmail author
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

We discuss SL(N, ℂ) Chern-Simons higher spin gauge theories in Euclidean AdS3. With appropriate boundary term, we derive the higher spin generalization of Schwarzian on-shell action. We investigate gravitationally dressed bi-locals, and we study the soft higher spin mode expansion to obtain soft mode eigenfunctions. We also derive the spin-s eigenfunction from Ward identity of \( \mathcal{W} \)-algebra and a recursion relation. Using the on-shell action, we evaluate the contributions of the soft higher spin modes to the out-of-time-order correlators, and the corresponding Lyapunov exponent of SL(N) higher spin gravity is found to be \( \frac{2\pi }{\beta}\left(N - 1\right) \).

Keywords

AdS-CFT Correspondence Black Holes Conformal and W Symmetry Higher Spin Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].
  3. [3]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].
  5. [5]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
  7. [7]
    V. Jahnke, K.-Y. Kim and J. Yoon, On the chaos bound in rotating black holes, JHEP 05 (2019) 037 [arXiv:1903.09086] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A.L. Fitzpatrick and J. Kaplan, A quantum correction to chaos, JHEP 05 (2016) 070 [arXiv:1601.06164] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate operators and the 1/c expansion: Lorentzian resummations, high order computations and super-Virasoro blocks, JHEP 03 (2017) 167 [arXiv:1606.02659] [INSPIRE].
  10. [10]
    E. Perlmutter, Bounding the space of holographic CFTs with chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  12. [12]
    P. Narayan and J. Yoon, SYK-like tensor models on the lattice, JHEP 08 (2017) 083 [arXiv:1705.01554] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    J. Yoon, SYK models and SYK-like tensor models with global symmetry, JHEP 10 (2017) 183 [arXiv:1707.01740] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    P. Narayan and J. Yoon, Supersymmetric SYK model with global symmetry, JHEP 08 (2018) 159 [arXiv:1712.02647] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D gravity and Chern-Simons, arXiv:1802.07746 [INSPIRE].
  16. [16]
    R.R. Poojary, BTZ dynamics and chaos, arXiv:1812.10073 [INSPIRE].
  17. [17]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  18. [18]
    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  21. [21]
    A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  22. [22]
    D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
  24. [24]
    R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE].
  25. [25]
    S. Carrozza and A. Tanasa, O(N) random tensor models, Lett. Math. Phys. 106 (2016) 1531 [arXiv:1512.06718] [INSPIRE].
  26. [26]
    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
  27. [27]
    R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys. B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE].
  28. [28]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  29. [29]
    G. Sárosi, AdS 2 holography and the SYK model, PoS(Modave2017)001 (2018) [arXiv:1711.08482] [INSPIRE].
  30. [30]
    V. Jahnke, Recent developments in the holographic description of quantum chaos, Adv. High Energy Phys. 2019 (2019) 9632708 [arXiv:1811.06949] [INSPIRE].zbMATHGoogle Scholar
  31. [31]
    S.R. Das, A. Jevicki and K. Suzuki, Three dimensional view of the SYK/AdS duality, JHEP 09 (2017) 017 [arXiv:1704.07208] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    S. Chaudhuri, V.I. Giraldo-Rivera, A. Joseph, R. Loganayagam and J. Yoon, Abelian tensor models on the lattice, Phys. Rev. D 97 (2018) 086007 [arXiv:1705.01930] [INSPIRE].
  33. [33]
    J. Yoon, Supersymmetric SYK model: bi-local collective superfield/supermatrix formulation, JHEP 10 (2017) 172 [arXiv:1706.05914] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    C. Peng, M. Spradlin and A. Volovich, Correlators in the N = 2 supersymmetric SYK model, JHEP 10 (2017) 202 [arXiv:1706.06078] [INSPIRE].
  35. [35]
    K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum chaos and holographic tensor models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    C. Krishnan, K.V.P. Kumar and S. Sanyal, Random matrices and holographic tensor models, JHEP 06 (2017) 036 [arXiv:1703.08155] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    R. de Mello Koch, R. Mello Koch, D. Gossman and L. Tribelhorn, Gauge invariants, correlators and holography in bosonic and fermionic tensor models, JHEP 09 (2017) 011 [arXiv:1707.01455] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  39. [39]
    M.M. Qaemmaqami, Butterfly effect in 3D gravity, Phys. Rev. D 96 (2017) 106012 [arXiv:1707.00509] [INSPIRE].
  40. [40]
    T. Azeyanagi, F. Ferrari and F.I. Schaposnik Massolo, Phase diagram of planar matrix quantum mechanics, tensor and Sachdev-Ye-Kitaev models, Phys. Rev. Lett. 120 (2018) 061602 [arXiv:1707.03431] [INSPIRE].
  41. [41]
    K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev. D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].
  42. [42]
    C. Krishnan, K.V. Pavan Kumar and D. Rosa, Contrasting SYK-like models, JHEP 01 (2018) 064 [arXiv:1709.06498] [INSPIRE].ADSzbMATHGoogle Scholar
  43. [43]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Space-time in the SYK model, JHEP 07 (2018) 184 [arXiv:1712.02725] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    P. Diaz and S.-J. Rey, Invariant operators, orthogonal bases and correlators in general tensor models, Nucl. Phys. B 932 (2018) 254 [arXiv:1801.10506] [INSPIRE].
  46. [46]
    S. Giombi, I.R. Klebanov, F. Popov, S. Prakash and G. Tarnopolsky, Prismatic large N models for bosonic tensors, Phys. Rev. D 98 (2018) 105005 [arXiv:1808.04344] [INSPIRE].
  47. [47]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  48. [48]
    C.-M. Chang, S. Colin-Ellerin and M. Rangamani, On melonic supertensor models, JHEP 10 (2018) 157 [arXiv:1806.09903] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    M. Berkooz, P. Narayan and J. Simon, Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction, JHEP 08 (2018) 192 [arXiv:1806.04380] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    D. Benedetti and R. Gurau, 2PI effective action for the SYK model and tensor field theories, JHEP 05 (2018) 156 [arXiv:1802.05500] [INSPIRE].
  51. [51]
    T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].ADSzbMATHGoogle Scholar
  52. [52]
    C. Peng, N = (0, 2) SYK, chaos and higher-spins, JHEP 12 (2018) 065 [arXiv:1805.09325] [INSPIRE].
  53. [53]
    C. Ahn and C. Peng, Chiral algebras of two-dimensional SYK models, arXiv:1812.05106 [INSPIRE].
  54. [54]
    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian theorya Wilson line perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].
  55. [55]
    T.G. Mertens, The Schwarzian theoryorigins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].
  56. [56]
    F. Sun, Y. Yi-Xiang, J. Ye and W.M. Liu, Classification of the quantum chaos in colored Sachdev-Ye-Kitaev models, arXiv:1903.02213 [INSPIRE].
  57. [57]
    A.M. García-García, T. Nosaka, D. Rosa and J.J.M. Verbaarschot, Quantum chaos transition in a two-site SYK model dual to an eternal traversable wormhole, arXiv:1901.06031 [INSPIRE].
  58. [58]
    R. de Mello Koch, W. LiMing, H.J.R. Van Zyl and J.P. Rodrigues, Chaos in the fishnet, Phys. Lett. B 793 (2019) 169 [arXiv:1902.06409] [INSPIRE].
  59. [59]
    J. Kim, I.R. Klebanov, G. Tarnopolsky and W. Zhao, Symmetry breaking in coupled SYK or tensor models, Phys. Rev. X 9 (2019) 021043 [arXiv:1902.02287] [INSPIRE].
  60. [60]
    F. Ferrari and F.I. Schaposnik Massolo, Phases of melonic quantum mechanics, arXiv:1903.06633 [INSPIRE].
  61. [61]
    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  62. [62]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].
  63. [63]
    D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS 2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].
  64. [64]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  66. [66]
    A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS 2 /nCFT 1 correspondence, JHEP 10 (2018) 042 [arXiv:1807.06988] [INSPIRE].
  67. [67]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3 gravity, JHEP 02 (2019) 079 [arXiv:1808.03263] [INSPIRE].
  68. [68]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].
  69. [69]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  70. [70]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].
  71. [71]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  72. [72]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W -symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].
  73. [73]
    C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].
  74. [74]
    J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].
  75. [75]
    C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space, Phys. Rev. D 20 (1979) 848 [INSPIRE].
  76. [76]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].
  77. [77]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].
  78. [78]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].
  79. [79]
    S. Prokushkin and M.A. Vasiliev, 3D higher spin gauge theories with matter, in Theory of elementary particles. Proceedings, 31st International Symposium Ahrenshoop, Buckow, Germany, 2-6 September 1997 [hep-th/9812242] [INSPIRE].
  80. [80]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in Higher spin gauge theories: proceedings, 1st Solvay Workshop, Brussels, Belgium, 12-14 May 2004, pg. 132 [hep-th/0503128] [INSPIRE].
  81. [81]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].
  82. [82]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].
  83. [83]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  84. [84]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    K. Papadodimas and S. Raju, Correlation functions in holographic minimal models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].
  86. [86]
    E. Hijano, P. Kraus and E. Perlmutter, Matching four-point functions in higher spin AdS 3 /CFT 2, JHEP 05 (2013) 163 [arXiv:1302.6113] [INSPIRE].
  87. [87]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical formulation of O(N) vector/higher spin correspondence, J. Phys. A 48 (2015) 105403 [arXiv:1408.4800] [INSPIRE].
  88. [88]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Holography as a gauge phenomenon in higher spin duality, JHEP 01 (2015) 055 [arXiv:1408.1255] [INSPIRE].Google Scholar
  89. [89]
    A. Jevicki and J. Yoon, Bulk from bi-locals in thermo field CFT, JHEP 02 (2016) 090 [arXiv:1503.08484] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  90. [90]
    J.R. David, S. Khetrapal and S.P. Kumar, Local quenches and quantum chaos from higher spin perturbations, JHEP 10 (2017) 156 [arXiv:1707.07166] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  91. [91]
    M. Bershadsky and H. Ooguri, Hidden SL(n) symmetry in conformal field theories, Commun. Math. Phys. 126 (1989) 49 [INSPIRE].
  92. [92]
    A. Marshakov and A. Morozov, A note on W 3 algebra, Nucl. Phys. B 339 (1990) 79 [INSPIRE].
  93. [93]
    W. Li and S. Theisen, Some aspects of holographic W -gravity, JHEP 08 (2015) 035 [arXiv:1504.07799] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  94. [94]
    H.A. González, D. Grumiller and J. Salzer, Towards a bulk description of higher spin SYK, JHEP 05 (2018) 083 [arXiv:1802.01562] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  95. [95]
    C.-T. Ma and H. Shu, SL(3) Chern-Simons higher spin and open Toda chain theories, arXiv:1902.10279 [INSPIRE].
  96. [96]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].
  97. [97]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  98. [98]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  99. [99]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  100. [100]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  101. [101]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  102. [102]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].
  103. [103]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].
  104. [104]
    R. de Mello Koch, A. Jevicki, K. Suzuki and J. Yoon, AdS maps and diagrams of bi-local holography, JHEP 03 (2019) 133 [arXiv:1810.02332] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  105. [105]
    M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  106. [106]
    E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].
  107. [107]
    M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].
  108. [108]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  109. [109]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  110. [110]
    J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].
  111. [111]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].ADSGoogle Scholar
  112. [112]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and W N conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].ADSzbMATHGoogle Scholar
  113. [113]
    A. Castro, N. Iqbal and E. Llabrés, Wilson lines and Ishibashi states in AdS 3 /CFT 2, JHEP 09 (2018) 066 [arXiv:1805.05398] [INSPIRE].
  114. [114]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  115. [115]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  116. [116]
    A. Blommaert, T.G. Mertens and H. Verschelde, Fine structure of Jackiw-Teitelboim quantum gravity, arXiv:1812.00918 [INSPIRE].
  117. [117]
    A. Blommaert, T.G. Mertens and H. Verschelde, Clocks and rods in Jackiw-Teitelboim quantum gravity, arXiv:1902.11194 [INSPIRE].
  118. [118]
    E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].
  119. [119]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].
  120. [120]
    C.-M. Chang and X. Yin, Correlators in W N minimal model revisited, JHEP 10 (2012) 050 [arXiv:1112.5459] [INSPIRE].
  121. [121]
    A. Jevicki and J. Yoon, Field theory of primaries in W N minimal models, JHEP 11 (2013) 060 [arXiv:1302.3851] [INSPIRE].ADSGoogle Scholar
  122. [122]
    C.-M. Chang and X. Yin, A semilocal holographic minimal model, Phys. Rev. D 88 (2013) 106002 [arXiv:1302.4420] [INSPIRE].
  123. [123]
    J. Murugan, D. Stanford and E. Witten, More on supersymmetric and 2d analogs of the SYK model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].
  124. [124]
    F.M. Haehl and M. Rozali, Effective field theory for chaotic CFTs, JHEP 10 (2018) 118 [arXiv:1808.02898] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  125. [125]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  126. [126]
    S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett. 120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].ADSGoogle Scholar
  127. [127]
    M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP 10 (2018) 127 [arXiv:1801.00010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  128. [128]
    M. Blake, R.A. Davison, S. Grozdanov and H. Liu, Many-body chaos and energy dynamics in holography, JHEP 10 (2018) 035 [arXiv:1809.01169] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  129. [129]
    S. Grozdanov, On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections, JHEP 01 (2019) 048 [arXiv:1811.09641] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  130. [130]
    A. Wünsche, Operator methods and SU(1, 1) symmetry in the theory of Jacobi and of ultraspherical polynomials, Adv. Pure Math. 07 (2017) 213.Google Scholar
  131. [131]
    S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla and R. Poojary, Notes on melonic O(N)q−1 tensor models, JHEP 06 (2018) 094 [arXiv:1707.09352] [INSPIRE].
  132. [132]
    M.A. Vasiliev, Higher spin gauge interactions for matter fields in two-dimensions, Phys. Lett. B 363 (1995) 51 [hep-th/9511063] [INSPIRE].
  133. [133]
    K.B. Alkalaev, On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys. A 47 (2014) 365401 [arXiv:1311.5119] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology PalakkadPalakkadIndia
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulRepublic of Korea

Personalised recommendations