Advertisement

The multi-Regge limit of the eight-particle amplitude beyond leading logarithmic accuracy

  • Robin Marzucca
  • Bram VerbeekEmail author
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We present the computation of the eight-particle three-loop amplitude beyond leading logarithmic accuracy in the multi-Regge limit of planar \( \mathcal{N} \) = 4 Super Yang-Mills theory. Starting from the all-loop dispersion integral form of the amplitude, we consider the eight-particle case and by analyzing said dispersion integral we associate it to a well-defined Fourier-Mellin transform. By using the properties of the Fourier-Mellin representation and its convolution product structure, we compute the three-loop eight-particle MHV amplitude at next-to-leading logarithmic accuracy. From this MHV result, we obtain the three-loop eight particle amplitude in multi-Regge kinematics for all helicity configurations, including next-to-next-to-MHV. Finally, we find that the result is described by combinations of single-valued multiple polylogarithms of uniform weight, the leading singularity structure of which corresponds to the classification shown at leading logarithmic accuracy.

Keywords

Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2019_10861_MOESM1_ESM.zip (571 kb)
ESM 1 (ZIP 571 kb)

References

  1. [1]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory,JHEP 05(2009) 046 [arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Beisert, A. Garus and M. Rosso, Yangian symmetry and integrability of planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 118 (2017) 141603 [arXiv:1701.09162] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, U.K. (2016) [arXiv:1212.5605] [INSPIRE].CrossRefzbMATHGoogle Scholar
  14. [14]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett. 117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude in N = 4 SYM, JHEP 08 (2014) 154 [arXiv:1406.2055] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann cluster bootstrap, JHEP 02 (2017) 137 [arXiv:1612.08976] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].
  18. [18]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
  19. [19]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
  20. [20]
    V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].
  21. [21]
    G. Camici and M. Ciafaloni, Irreducible part of the next-to-leading BFKL kernel, Phys. Lett. B 412 (1997) 396 [Erratum ibid. B 417 (1998) 390] [hep-ph/9707390] [INSPIRE].
  22. [22]
    M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].
  23. [23]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Bargheer, G. Papathanasiou and V. Schomerus, The two-loop symbol of all multi-Regge regions, JHEP 05 (2016) 012 [arXiv:1512.07620] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Bargheer, Systematics of the multi-Regge three-loop symbol, JHEP 11 (2017) 077 [arXiv:1606.07640] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    V. Del Duca, C. Duhr, F. Dulat and B. Penante, All two-loop MHV remainder functions in multi-Regge kinematics, JHEP 01 (2019) 162 [arXiv:1811.10398] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP 08 (2016) 152 [arXiv:1606.08807] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP 06 (2018) 116 [arXiv:1801.10605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math.AG/0103059.
  32. [32]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Del Duca et al., The all-order structure of MRK amplitudes in N = 4 SYM, in preparation.Google Scholar
  34. [34]
    F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/~brown/RHpaper5.pdf.
  35. [35]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    J. Bartels, V. Schomerus and M. Sprenger, The Bethe roots of Regge cuts in strongly coupled \( \mathcal{N} \) = 4 SYM theory,JHEP 07(2015) 098 [arXiv:1411.2594] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    L.N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N = 4 super Yang-Mills, Phys. Rev. D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].ADSGoogle Scholar
  38. [38]
    L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].ADSGoogle Scholar
  39. [39]
    L. Lipatov, A. Prygarin and H.J. Schnitzer, The multi-Regge limit of NMHV amplitudes in N = 4 SYM theory,JHEP 01(2013) 068 [arXiv:1205.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the N = 7 scattering amplitude in N = 4 SYM theory in the multi-Regge kinematics: conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [arXiv:1311.2061] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Bartels, A. Kormilitzin and L.N. Lipatov, Analytic structure of the N = 7 scattering amplitude in N = 4 theory in multi-Regge kinematics: conformal Regge cut contribution, Phys. Rev. D 91 (2015) 045005 [arXiv:1411.2294] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP 01 (2015) 027 [arXiv:1407.3766] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)UCLouvainLouvain-La-NeuveBelgium

Personalised recommendations