A study of time reversal symmetry of abelian anyons

  • Yasunori LeeEmail author
  • Yuji Tachikawa
Open Access
Regular Article - Theoretical Physics


We perform a study of time reversal symmetry of abelian anyons \( \mathcal{A} \) in 2+1 dimensions, in the spin structure independent cases. We will find the importance of the group \( \mathcal{C} \) of time-reversal-symmetric anyons modulo anyons composed from an anyon and its time reversal. Possible choices of local Kramers degeneracy are given by quadratic refinements of the braiding phases of \( \mathcal{C} \), and the anomaly is then given by the Arf invariant of the chosen quadratic refinement. We also give a concrete study of the cases when |\( \mathcal{A} \)| is odd or \( \mathcal{A}={\left({\mathrm{\mathbb{Z}}}_2\right)}^N \).


Anomalies in Field and String Theories Anyons Discrete Symmetries Topological Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry, defects and gauging of topological phases, arXiv:1410.4540 [INSPIRE].
  2. [2]
    M. Barkeshli, P. Bonderson, C.-M. Jian, M. Cheng and K. Walker, Reflection and time reversal symmetry enriched topological phases of matter: path integrals, non-orientable manifolds and anomalies, arXiv:1612.07792 [INSPIRE].
  3. [3]
    A.P.O. Chan, J.C.Y. Teo and S. Ryu, Topological phases on non-orientable surfaces: twisting by parity symmetry, New J. Phys. 18 (2016) 035005 [arXiv:1509.03920] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M.A. Metlitski, L. Fidkowski, X. Chen and A. Vishwanath, Interaction effects on 3D topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets, arXiv:1406.3032 [INSPIRE].
  5. [5]
    N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
  6. [6]
    M. Barkeshli and M. Cheng, Time-reversal and spatial reflection symmetry localization anomalies in (2 + 1)D topological phases of matter, arXiv:1706.09464 [INSPIRE].
  7. [7]
    Y. Tachikawa, On gauging finite subgroups, arXiv:1712.09542 [INSPIRE].
  8. [8]
    F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies, arXiv:1803.09336 [INSPIRE].
  9. [9]
    D. Belov and G.W. Moore, Classification of abelian spin Chern-Simons theories, hep-th/0505235 [INSPIRE].
  10. [10]
    S.D. Stirling, Abelian Chern-Simons theory with toral gauge group, modular tensor categories and group categories, Ph.D. thesis, Math Dept., Texas U., Austin, U.S.A., (2008) [arXiv:0807.2857] [INSPIRE].
  11. [11]
    A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B 845 (2011) 393 [arXiv:1008.0654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The operator algebra of orbifold models, Commun. Math. Phys. 123 (1989) 485 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Coste, T. Gannon and P. Ruelle, Finite group modular data, Nucl. Phys. B 581 (2000) 679 [hep-th/0001158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C.T.C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963) 281.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    C.T.C. Wall, Quadratic forms on finite groups. II, Bull. London Math. Soc. 4 (1972) 156.Google Scholar
  16. [16]
    V.V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Math. USSR-Izv 14 (1980) 103.CrossRefzbMATHGoogle Scholar
  17. [17]
    G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G.W. Moore and N. Seiberg, Lectures on RCFT, in Strings 89, Proceedings of the Trieste Spring School on Superstrings,∼gmoore/LecturesRCFT.pdf, World Scientific, (1990) [INSPIRE].
  19. [19]
    C. Dong and J. Lepowsky, Generalized vertex algebras and relative vertex operators, Prog. Math. 112, Birkhäuser, Boston, MA, U.S.A., (1993).Google Scholar
  20. [20]
    F. Quinn, Group categories and their field theories, Geom. Topol. Monographs 2 (1999) 407 [math/9811047] [INSPIRE].
  21. [21]
    J. Polchinski, String theory, volume 2: superstring theory and beyond, Cambridge University Press, Cambridge, U.K., (1998) [INSPIRE].
  22. [22]
    V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories. I, Selecta Math. 16 (2010) 1 [arXiv:0906.0620].
  23. [23]
    S. Eilenberg and S. Mac Lane, On the groups H, n). II. Methods of computation, Ann. Math. 60 (1954) 49.MathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].
  25. [25]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S.X. Cui, C. Galindo, J.Y. Plavnik and Z. Wang, On gauging symmetry of modular categories, Commun. Math. Phys. 348 (2016) 1043 [arXiv:1510.03475] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, arXiv:1802.04790 [INSPIRE].
  28. [28]
    E. Pavel and C. Galindo, Reflection fusion categories, arXiv:1803.05568.
  29. [29]
    A. Kapustin, Symmetry protected topological phases, anomalies and cobordisms: beyond group cohomology, arXiv:1403.1467 [INSPIRE].
  30. [30]
    A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry protected topological phases and cobordisms, JHEP 12 (2015) 052 [arXiv:1406.7329] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE].
  32. [32]
    K. Yonekura, On the cobordism classification of symmetry protected topological phases, arXiv:1803.10796 [INSPIRE].
  33. [33]
    C. Wang and M. Levin, Anomaly indicators for time-reversal symmetric topological orders, Phys. Rev. Lett. 119 (2017) 136801 [arXiv:1610.04624] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2 + 1D topological phases, PTEP 2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].
  35. [35]
    Y. Tachikawa and K. Yonekura, More on time-reversal anomaly of 2 + 1D topological phases, Phys. Rev. Lett. 119 (2017) 111603 [arXiv:1611.01601] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D. Dugger, Involutions in the topologists’ orthogonal group, arXiv:1612.08487.
  37. [37]
    M.F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. 4 (1971) 47.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. 2 (1980) 365.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    R.C. Kirby and L.R. Taylor, Pin structures on low-dimensional manifolds, in Geometry of low-dimensional manifolds, vol. 2, London Math. Soc. Lect. Note Ser. 151 (1991) 177.Google Scholar
  40. [40]
    S. Klaus, Brown-Kervaire invariants, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, (1995).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the UniverseUniversity of TokyoKashiwaJapan

Personalised recommendations