Advertisement

BPS Kerr-AdS time machines

  • M. Cvetič
  • Wei-Jian Geng
  • H. Lü
  • C. N. Pope
Open Access
Regular Article - Theoretical Physics

Abstract

It was recently observed that Kerr-AdS metrics with negative mass can describe smooth spacetimes that have a region within which naked closed time-like curves can arise, bounded by a velocity of light surface. Such spacetimes are sometimes known as time machines. In this paper we study the BPS limit of these metrics, and find that the mass and angular momenta become discretised. The completeness of the spacetime also requires that the asymptotic time coordinate be periodic, with precisely the same period as that which arises naturally for the global AdS, viewed as a hyperboliod in one extra dimension, in which the time machine spacetime is immersed. For the case of equal angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show they are consistent with the global structure. Thus in examples where the solutions can be embedded in gauged supergravity, they will be supersymmetric. We also compare the global structure of the BPS AdS3 time machine with the BTZ black hole, and show that the global structure allows two different supersymmetric limits.

Keywords

Classical Theories of Gravity Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    B. Carter, Black holes equilibrium states, in Black Holes, Les Houches Lectures, B.S. DeWitt and C. DeWitt eds., Gordon and Breach, New York (1972).Google Scholar
  4. [4]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].
  6. [6]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The General Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93 (2004) 171102 [hep-th/0409155] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged supergravities: Thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].
  9. [9]
    M. Cvetič, P. Gao and J. Simon, Supersymmetric Kerr-Anti-de Sitter solutions, Phys. Rev. D 72 (2005) 021701 [hep-th/0504136] [INSPIRE].
  10. [10]
    M. Cvetič, H. Lü, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].
  11. [11]
    M. Cvetič, H. Lü, D.N. Page and C.N. Pope, New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter, JHEP 07 (2009) 082 [hep-th/0505223] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].
  13. [13]
    X.-H. Feng, W.-J. Geng and H. Lü, Time Machines and AdS Solitons with Negative Mass, Phys. Rev. D 95 (2017) 084013 [arXiv:1701.00006] [INSPIRE].
  14. [14]
    K. Gödel, An Example of a new type of cosmological solutions of Einstein’s field equations of graviation, Rev. Mod. Phys. 21 (1949) 447 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].
  16. [16]
    G.W. Gibbons and C.A.R. Herdeiro, Supersymmetric rotating black holes and causality violation, Class. Quant. Grav. 16 (1999) 3619 [hep-th/9906098] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204] [INSPIRE].
  18. [18]
    C.A.R. Herdeiro, Special properties of five-dimensional BPS rotating black holes, Nucl. Phys. B 582 (2000) 363 [hep-th/0003063] [INSPIRE].
  19. [19]
    C.A.R. Herdeiro, Spinning deformations of the D1-D5 system and a geometric resolution of closed timelike curves, Nucl. Phys. B 665 (2003) 189 [hep-th/0212002] [INSPIRE].
  20. [20]
    V. Diemer and J. Kunz, Supersymmetric rotating black hole spacetime tested by geodesics, Phys. Rev. D 89 (2014) 084001 [arXiv:1312.6540] [INSPIRE].
  21. [21]
    D. Klemm and W.A. Sabra, Charged rotating black holes in 5-D Einstein-Maxwell (A)dS gravity, Phys. Lett. B 503 (2001) 147 [hep-th/0010200] [INSPIRE].
  22. [22]
    D. Klemm and W.A. Sabra, General (anti-)de Sitter black holes in five-dimensions, JHEP 02 (2001) 031 [hep-th/0011016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    O. Coussaert and M. Henneaux, Supersymmetry of the (2+1) black holes, Phys. Rev. Lett. 72 (1994) 183 [hep-th/9310194] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    E. Colgáin and H. Yavartanoo, Bañados and SUSY: on supersymmetry and minimal surfaces of locally AdS 3 geometries, Class. Quant. Grav. 34 (2017) 095008 [arXiv:1610.05638] [INSPIRE].
  26. [26]
    P. Hoxha, R.R. Martinez-Acosta and C.N. Pope, Kaluza-Klein consistency, Killing vectors and Kähler spaces, Class. Quant. Grav. 17 (2000) 4207 [hep-th/0005172] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    F. Wilczek, Quantum Time Crystals, Phys. Rev. Lett. 109 (2012) 160401 [arXiv:1202.2539] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Van Proeyen, Tools for supersymmetry, Ann. U. Craiova Phys. 9 (1999) 1 [hep-th/9910030] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.
  3. 3.Department of PhysicsTianjin UniversityTianjinChina
  4. 4.George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  5. 5.DAMTP, Centre for Mathematical SciencesCambridge UniversityCambridgeU.K.

Personalised recommendations