Advertisement

The non-Abelian tensor multiplet

Open Access
Regular Article - Theoretical Physics
  • 11 Downloads

Abstract

We assume the existence of a background vector field that enables us to make an ansatz for the superconformal transformations for the non-Abelian 6d (1, 0) tensor multiplet. Closure of supersymmetry on generators of the conformal algebra and the R-symmetry, requires that the vector field is Abelian, has scaling dimension minus one and that the supersymmetry parameter as well as all the fields in the tensor multiplet have vanishing Lie derivatives along this vector field. We couple the tensor multiplet to an adjoint hypermultiplet, and present a Lagrangian for the combined system that has enhanced (2, 0) superconformal symmetry. We also obtain the off-shell supersymmetry variations for both the tensor and the hypermultiplets.

Keywords

Conformal Field Theory Field Theories in Higher Dimensions M-Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    N. Berkovits, A ten-dimensional superYang-Mills action with off-shell supersymmetry, Phys. Lett. B 318 (1993) 104 [hep-th/9308128] [INSPIRE].
  3. [3]
    O. Alvarez, L.A. Ferreira and J. Sanchez Guillen, A new approach to integrable theories in any dimension, Nucl. Phys. B 529 (1998) 689 [hep-th/9710147] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  5. [5]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].
  6. [6]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].
  7. [7]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    H. Awata, M. Li, D. Minic and T. Yoneya, On the quantization of Nambu brackets, JHEP 02 (2001) 013 [hep-th/9906248] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    J. Gomis, G. Milanesi and J.G. Russo, Bagger-Lambert Theory for General Lie Algebras, JHEP 06 (2008) 075 [arXiv:0805.1012] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, N = 8 superconformal gauge theories and M2 branes, JHEP 01 (2009) 078 [arXiv:0805.1087] [INSPIRE].
  11. [11]
    P.-M. Ho, Y. Imamura and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003 [arXiv:0805.1202] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].
  13. [13]
    C.-H. Chen, P.-M. Ho and T. Takimi, A No-Go Theorem for M5-brane Theory, JHEP 03 (2010) 104 [arXiv:1001.3244] [INSPIRE].MathSciNetMATHADSGoogle Scholar
  14. [14]
    N. Lambert and C. Papageorgakis, Nonabelian (2,0) Tensor Multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  15. [15]
    A. Gustavsson, An associative star-three-product and applications to M two/M five-brane theory, JHEP 11 (2010) 043 [arXiv:1008.0902] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  16. [16]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].
  17. [17]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  18. [18]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  19. [19]
    H. Linander and F. Ohlsson, (2,0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].
  20. [20]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].
  21. [21]
    D. Bak and A. Gustavsson, M5/D4 brane partition function on a circle bundle, JHEP 12 (2012) 099 [arXiv:1209.4391] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    L. Dolan and Y. Sun, Partition Functions for Maxwell Theory on the Five-torus and for the Fivebrane on S 1 × T 5, JHEP 09 (2013) 011 [arXiv:1208.5971] [INSPIRE].
  23. [23]
    F.-M. Chen, OSp(5|4) Superconformal Symmetry of N = 5 Chern-Simons Theory, Nucl. Phys. B 873 (2013) 372 [arXiv:1212.4316] [INSPIRE].
  24. [24]
    F.-M. Chen, A nonabelian (1, 0) tensor multiplet theory in 6D, JHEP 02 (2014) 034 [arXiv:1312.4330] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  25. [25]
    S.-L. Ko, D. Sorokin and P. Vanichchapongjaroen, The M5-brane action revisited, JHEP 11 (2013) 072 [arXiv:1308.2231] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  26. [26]
    J.D. Qualls, Lectures on Conformal Field Theory, arXiv:1511.04074 [INSPIRE].
  27. [27]
    J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP 03 (2015) 155 [arXiv:1502.07154] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    O.J. Ganor, Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings, Phys. Rev. D 97 (2018) 041901 [arXiv:1710.06880] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations