Advertisement

Field theoretic renormalization study of interaction corrections to the universal ac conductivity of graphene

  • S. Teber
  • A. V. Kotikov
Open Access
Regular Article - Theoretical Physics

Abstract

The two-loop interaction correction coefficient to the universal ac conductivity of disorder-free intrinsic graphene is computed with the help of a field theoretic renormalization study using the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription. Non-standard Ward identities imply that divergent subgraphs (related to Fermi velocity renormalization) contribute to the renormalized optical conductivity. Proceeding either via densitydensity or via current-current correlation functions, a single well-defined value is obtained: \( \mathcal{C}=\left.\left(19-6\pi \right)/12\right)=0.01 \) in agreement with the result first obtained by Mishchenko and which is compatible with experimental uncertainties.

Keywords

Field Theories in Lower Dimensions Renormalization Regularization and Renormalons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N.M.R. Peres, Colloquium: The Transport properties of graphene: An Introduction, Rev. Mod. Phys. 82 (2010) 2673 [arXiv:1007.2849] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P.R. Wallace, The Band Theory of Graphite, Phys. Rev. 71 (1947) 622.ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    G.W. Semenoff, Condensed Matter Simulation of a Three-dimensional Anomaly, Phys. Rev. Lett. 53 (1984) 2449 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E. Fradkin, Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory, Phys. Rev. B 33 (1986) 3263 [INSPIRE].
  5. [5]
    P.A. Lee, Localized states in a d-wave superconductor, Phys. Rev. Lett. 71 (1993) 1887.ADSCrossRefGoogle Scholar
  6. [6]
    A.W.W. Ludwig, M.P.A. Fisher, R. Shankar and G. Grinstein, Integer quantum Hall transition: An alternative approach and exact results, Phys. Rev. B 50 (1994) 7526.ADSCrossRefGoogle Scholar
  7. [7]
    R.R. Nair et al., Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich and T.F. Heinz, Measurement of the Optical Conductivity of Graphene, Phys. Rev. Lett. 101 (2008) 196405 [arXiv:0810.1269].ADSCrossRefGoogle Scholar
  9. [9]
    V.P. Gusynin, S.G. Sharapov and J.P. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Phys. Rev. Lett. 96 (2006) 256802 [cond-mat/0603267].
  10. [10]
    V.P. Gusynin, S.G. Sharapov and J.P. Carbotte, On the universal ac optical background in graphene, New J. Phys. 11 (2009) 095013 [arXiv:0908.2803].ADSCrossRefGoogle Scholar
  11. [11]
    W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123 (1961) 1242 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    R.E. Throckmorton and S. Das Sarma, Failure of Kohns Theorem and f-sum-rule in intrinsic Dirac-Weyl materials in the presence of a filled Fermi sea, arXiv:1805.03650.
  13. [13]
    A. Giuliani, V. Mastropietro and M. Porta, Absence of interaction corrections in the optical conductivity of graphene, Phys. Rev. B 83 (2011) 195401 [arXiv:1010.4461].ADSCrossRefGoogle Scholar
  14. [14]
    I.F. Herbut, V. Juričić and O. Vafek, Coulomb Interaction, Ripples, and the Minimal Conductivity of Graphene, Phys. Rev. Lett. 100 (2008) 046403 [arXiv:0707.4171].ADSCrossRefGoogle Scholar
  15. [15]
    E.G. Mishchenko, Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly, Europhys. Lett. 83 (2008) 17005 [arXiv:0709.4245].ADSCrossRefGoogle Scholar
  16. [16]
    V. Juricic, O. Vafek and I.F. Herbut, Conductivity of interacting massless Dirac particles in graphene: Collisionless regime, Phys. Rev. B 82 (2010) 235402 [arXiv:1009.3269] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D.E. Sheehy and J. Schmalian, Optical transparency of graphene as determined by the fine-structure constant, Phys. Rev. B 80 (2009) 193411 [arXiv:0906.5164].ADSCrossRefGoogle Scholar
  18. [18]
    S.H. Abedinpour, G. Vignale, A. Principi, M. Polini, W.-K. Tse and A.H. MacDonald, Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets, Phys. Rev. B 84 (2011) 045429 [arXiv:1101.4291].ADSCrossRefGoogle Scholar
  19. [19]
    S. Teber, Electromagnetic current correlations in reduced quantum electrodynamics, Phys. Rev. D 86 (2012) 025005 [arXiv:1204.5664] [INSPIRE].ADSGoogle Scholar
  20. [20]
    I. Sodemann and M.M. Fogler, Interaction corrections to the polarization function of graphene, Phys. Rev. B 86 (2012) 115408 [arXiv:1206.3519].ADSCrossRefGoogle Scholar
  21. [21]
    A.V. Kotikov and S. Teber, Note on an application of the method of uniqueness to reduced quantum electrodynamics, Phys. Rev. D 87 (2013) 087701 [arXiv:1302.3939] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G. Gazzola, A.L. Cherchiglia, L.A. Cabral, M.C. Nemes and M. Sampaio, Conductivity of Coulomb interacting massless Dirac particles in graphene: Regularization-dependent parameters and symmetry constraints, Europhys. Lett. 104 (2013) 27002 [arXiv:1305.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Rosenstein, M. Lewkowicz and T. Maniv, Chiral anomaly and strength of the electron-electron interaction in graphene, Phys. Rev. Lett. 110 (2013) 066602 [arXiv:1210.3345] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    I.F. Herbut and V. Mastropietro, Universal conductivity of graphene in the ultrarelativistic regime, Phys. Rev. B 87 (2013) 205445 [arXiv:1304.1988] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Teber and A.V. Kotikov, Interaction corrections to the minimal conductivity of graphene via dimensional regularization, Europhys. Lett. 107 (2014) 57001 [arXiv:1407.7501] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.M. Link, P.P. Orth, D.E. Sheehy and J. Schmalian, Universal collisionless transport of graphene, Phys. Rev. B 93 (2016) 235447 [arXiv:1511.05984].ADSCrossRefGoogle Scholar
  27. [27]
    D.L. Boyda, V.V. Braguta, M.I. Katsnelson and M.V. Ulybyshev, Many-body effects on graphene conductivity: Quantum Monte Carlo calculations, Phys. Rev. B 94 (2016) 085421 [arXiv:1601.05315] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Stauber, P. Parida, M. Trushin, M. Ulybyshev, D. Boyda and J. Schliemann, Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response, Phys. Rev. Lett. 118 (2017) 266801 [arXiv:1704.03747] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Teber and A.V. Kotikov, Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids, Phys. Rev. D 97 (2018) 074004 [arXiv:1801.10385] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Teber and A.V. Kotikov, The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations, Theor. Math. Phys. 190 (2017) 446 [arXiv:1602.01962] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. González, F. Guinea and M.A.H. Vozmediano, NonFermi liquid behavior of electrons in the half filled honeycomb lattice (A Renormalization group approach), Nucl. Phys. B 424 (1994) 595 [hep-th/9311105] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N.N. Bogoliubov and O.S. Parasiuk, On the Multiplication of the causal function in the quantum theory of fields, Acta Math. 97 (1957) 227.MathSciNetCrossRefGoogle Scholar
  33. [33]
    K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys. 2 (1966) 301 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    W. Zimmermann, Convergence of Bogolyubovs method of renormalization in momentum space, Commun. Math. Phys. 15 (1969) 208 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    W. Zimmermann, Local Operator Products and Renormalization in Quantum Field Theory, in Lectures on elementary particle and quantum field theory, Brandies University Summer Institute in Theoretical Physics, MIT Press Cambridge, Massachusetts (1970).Google Scholar
  36. [36]
    J.C. Collins, Renormalization: An Introduction to Renormalization, The Renormalization Group, and the Operator Product Expansion, Cambridge Monographs on Mathematical Physics (1986).Google Scholar
  37. [37]
    D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 303 [q-alg/9707029] [INSPIRE].
  38. [38]
    E. Panzer, Renormalization, Hopf algebras and Mellin transforms, Contemp. Math. 648 (2015) 169 [arXiv:1407.4943] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J. Hofmann, E. Barnes and S. Das Sarma, Why Does Graphene Behave as a Weakly Interacting System?, Phys. Rev. Lett. 113 (2014) 105502 [arXiv:1405.7036] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Jackiw, When radiative corrections are finite but undetermined, Int. J. Mod. Phys. B 14 (2000) 2011 [hep-th/9903044] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    W.B. Kilgore, Regularization Schemes and Higher Order Corrections, Phys. Rev. D 83 (2011) 114005 [arXiv:1102.5353] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A.N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior theory and Stochastic Dynamics, Chapman & Hall/CRC (2004).Google Scholar
  43. [43]
    J. Ye and S. Sachdev, Coulomb Interactions at Quantum Hall Critical Points of Systems in a Periodic Potential, Phys. Rev. Lett. 80 (1998) 5409 [cond-mat/9712161].
  44. [44]
    I.F. Herbut, Quantum Critical Points with the Coulomb Interaction and the Dynamical Exponent: When and Why z = 1, Phys. Rev. Lett. 87 (2001) 137004 [cond-mat/0105544].
  45. [45]
    S. Weinberg, High-energy behavior in quantum field theory, Phys. Rev. 118 (1960) 838 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A.V. Kotikov and S. Teber, Critical behavior of (2 + 1)-dimensional QED: 1/N f corrections in an arbitrary nonlocal gauge, Phys. Rev. D 94 (2016) 114011 [arXiv:1609.06912] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A.V. Kotikov and S. Teber, Critical behaviour of reduced QED 4,3 and dynamical fermion gap generation in graphene, Phys. Rev. D 94 (2016) 114010 [arXiv:1610.00934] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D.I. Kazakov and A.V. Kotikov, The Method of Uniqueness: Multiloop Calculations in QCD, Theor. Math. Phys. 73 (1988) 1264 [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHEParisFrance
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations