Einstein-Gauss-Bonnet black rings at large D

  • Bin Chen
  • Peng-Cheng LiEmail author
  • Cheng-Yong Zhang
Open Access
Regular Article - Theoretical Physics


We study the black ring solution in the Einstein-Gauss-Bonnet (EGB) theory at large D. By using the 1/D expansion in the near horizon region we derive the effective equations for the slowly rotating black holes in the EGB theory. The effective equations describe the non-linear dynamics of various stationary solutions, including the EGB black ring, the slowly rotating EGB black hole and the slowly boosted EGB black string. By different embeddings we construct these stationary solutions explicitly. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the EGB black ring. We find that thin EGB black ring becomes unstable against non-axisymmetric perturbation. Furthermore, we numerically evolve the effective equations in a particular case to study the final state of the instability, and find that the thin black ring becomes the stable non-uniform black ring at late time, which gives a relative strong evidence to support the conjecture given in [25].


Black Holes Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    G.T. Horowitz, Black holes in higher dimensions, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  3. [3]
    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    O.J.C. Dias, J.E. Santos and B. Way, Numerical methods for finding stationary gravitational solutions, Class. Quant. Grav. 33 (2016) 133001 [arXiv:1510.02804] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Emparan et al., The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Armas and T. Harmark, Black holes and biophysical (mem)-branes, Phys. Rev. D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.L. Hovdebo and R.C. Myers, Black rings, boosted strings and Gregory-Laflamme, Phys. Rev. D 73 (2006) 084013 [hep-th/0601079] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP 12 (2006) 074 [hep-th/0608076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Q.-Q. Jiang and S.-Q. Wu, Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies, Phys. Lett. B 647 (2007) 200 [hep-th/0701002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Figueras, K. Murata and H.S. Reall, Black hole instabilities and local Penrose inequalities, Class. Quant. Grav. 28 (2011) 225030 [arXiv:1107.5785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J.E. Santos and B. Way, Neutral black rings in five dimensions are unstable, Phys. Rev. Lett. 114 (2015) 221101 [arXiv:1503.00721] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Figueras, M. Kunesch and S. Tunyasuvunakool, End point of black ring instabilities and the weak cosmic censorship conjecture, Phys. Rev. Lett. 116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Emparan et al., Effective theory of black holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    R. Suzuki and K. Tanabe, Stationary black holes: large D analysis, JHEP 09 (2015) 193 [arXiv:1505.01282] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A charged membrane paradigm at large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    Y. Dandekar, A. De, S. Mazumdar, S. Minwalla and A. Saha, The large D black hole Membrane Paradigm at first subleading order, JHEP 12 (2016) 113 [arXiv:1607.06475] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Bhattacharyya et al., The large D black hole dynamics in AdS/dS backgrounds, arXiv:1704.06076 [INSPIRE].
  22. [22]
    S. Bhattacharyya, P. Biswas and Y. Dandekar, Black holes in presence of cosmological constant: second order in 1/D, arXiv:1805.00284 [INSPIRE].
  23. [23]
    R. Suzuki and K. Tanabe, Non-uniform black strings and the critical dimension in the 1/D expansion, JHEP 10 (2015) 107 [arXiv:1506.01890] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and end point of the black string instability: large D solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Tanabe, Black rings at large D, JHEP 02 (2016) 151 [arXiv:1510.02200] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Tanabe, Instability of the de Sitter Reissner-Nordstrom black hole in the 1/D expansion, Class. Quant. Grav. 33 (2016) 125016 [arXiv:1511.06059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Emparan et al., Hydro-elastic complementarity in black branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Sadhu and V. Suneeta, Nonspherically symmetric black string perturbations in the large dimension limit, Phys. Rev. D 93 (2016) 124002 [arXiv:1604.00595].ADSMathSciNetGoogle Scholar
  29. [29]
    C.P. Herzog, M. Spillane and A. Yarom, The holographic dual of a Riemann problem in a large number of dimensions, JHEP 08 (2016) 120 [arXiv:1605.01404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. Tanabe, Elastic instability of black rings at large D, arXiv:1605.08116 [INSPIRE].
  31. [31]
    K. Tanabe, Charged rotating black holes at large D, arXiv:1605.08854 [INSPIRE].
  32. [32]
    M. Rozali and A. Vincart-Emard, On brane instabilities in the large D limit, JHEP 08 (2016) 166 [arXiv:1607.01747].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    B. Chen, P.-C. Li and Z.-Z. Wang, Charged black rings at large D, JHEP 04 (2017) 167 [arXiv:1702.00886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    M. Rozali, E. Sabag and A. Yarom, Holographic turbulence in a large number of dimensions, JHEP 04 (2018) 065 [arXiv:1707.08973] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    B. Chen, P.-C. Li, Y. Tian and C.-Y. Zhang, Holographic turbulence in Einstein-Gauss-Bonnet gravity at large D, arXiv:1804.05182 [INSPIRE].
  36. [36]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. B 156 (1985) 315.ADSCrossRefGoogle Scholar
  39. [39]
    D.G. Boulware and S. Deser, String-generated gravity models, Phys. Rev. Lett. 55 (1985) 2656.ADSCrossRefGoogle Scholar
  40. [40]
    J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended einstein equations, Nucl. Phys. B 268 (1986) 737 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Kobayashi and T. Tanaka, Five-dimensional black strings in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 71 (2005) 084005 [gr-qc/0412139] [INSPIRE].
  42. [42]
    P. Suranyi, C. Vaz and L.C.R. Wijewardhana, The fate of black branes in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 79 (2009) 124046 [arXiv:0810.0525] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Brihaye, T. Delsate and E. Radu, Einstein-Gauss-Bonnet black strings, JHEP 07 (2010) 022 [arXiv:1004.2164] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    B. Kleihaus, J. Kunz and E. Radu, Generalized Weyl solutions in d = 5 Einstein-Gauss-Bonnet theory: the static black ring, JHEP 02 (2010) 092 [arXiv:0912.1725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    B. Chen, Z.-Y. Fan, P. Li and W. Ye, Quasinormal modes of Gauss-Bonnet black holes at large D, JHEP 01 (2016) 085 [arXiv:1511.08706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Chen and P.-C. Li, Static Gauss-Bonnet black holes at large D, JHEP 05 (2017) 025 [arXiv:1703.06381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet black strings at large D, JHEP 10 (2017) 123 [arXiv:1707.09766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    H.-C. Kim and R.-G. Cai, Slowly rotating charged Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 77 (2008) 024045 [arXiv:0711.0885] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  50. [50]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 10 6 [arXiv:1402.6215] [INSPIRE].
  51. [51]
    E. Sorkin, A critical dimension in the black string phase transition, Phys. Rev. Lett. 93 (2004) 031601 [hep-th/0402216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S. Hollands, A. Ishibashi and R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [INSPIRE].
  53. [53]
    R. Emparan, R. Luna, M. Martinez, R. Suzuki and K. Tanabe, Phases and stability of non-uniform black strings, JHEP 05 (2018) 104 [arXiv:1802.08191] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations