Cosmological aspects of the clockwork axion

  • Andrew J. LongEmail author
Open Access
Regular Article - Theoretical Physics


The clockwork axion refers to a family of aligned multi-axion models that lead to an exponential hierarchy between the scale of Peccei-Quinn symmetry breaking and the scale of the axion decay constant. The clockworking can bring the Peccei-Quinn-scale particles to within reach of collider experiments. In this work we are interested in whether cosmological observations impose any new constraints on the clockwork axion. If the universe reheats above the scale of Peccei-Quinn breaking, then the ensuing cosmological phase transition produces a network of topological defects, which have a qualitatively different behavior from the string-wall network in the usual axion models. We estimate the relic abundances of axion dark matter and dark radiation that arise from the emission of axions by the defect network, and we infer a constraint on the scale of Peccei-Quinn breaking and the mass spectrum. We find that the defect contribution to the axion dark matter relic abundance is generally negligible. However, the defect production of relativistic axion dark radiation becomes significant if the scale of Peccei-Quinn symmetry breaking is larger than 100 TeV, and measurements of ΔNeff provide a new probe of this class of models.


Cosmology of Theories beyond the SM Beyond Standard Model Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].
  7. [7]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].
  9. [9]
    M. Kuster, G. Raffelt and B. Beltran, Axions: theory, cosmology, and experimental searches. Proceedings, 1st Joint ILIAS-CERN-CAST axion training, Geneva, Switzerland, November 30 - December 2, 2005, Lect. Notes Phys. 741 (2008) 1.Google Scholar
  10. [10]
    P. Di Vecchia and G. Veneziano, Chiral Dynamics in the Large N Limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].
  11. [11]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
  13. [13]
    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].
  14. [14]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, The QCD Axion from Aligned Axions and Diphoton Excess, Phys. Lett. B 755 (2016) 13 [arXiv:1512.05295] [INSPIRE].
  15. [15]
    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
  17. [17]
    D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
  18. [18]
    M. Farina, D. Pappadopulo, F. Rompineve and A. Tesi, The photo-philic QCD axion, JHEP 01 (2017) 095 [arXiv:1611.09855] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Kehagias and A. Riotto, Clockwork Inflation, Phys. Lett. B 767 (2017) 73 [arXiv:1611.03316] [INSPIRE].
  20. [20]
    T. Higaki, K.S. Jeong, N. Kitajima, T. Sekiguchi and F. Takahashi, Topological Defects and nano-Hz Gravitational Waves in Aligned Axion Models, JHEP 08 (2016) 044 [arXiv:1606.05552] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, Quality of the Peccei-Quinn symmetry in the Aligned QCD Axion and Cosmological Implications, JHEP 06 (2016) 150 [arXiv:1603.02090] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Vilenkin, Alex and Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge, U.K., (1994).Google Scholar
  23. [23]
    A. Vilenkin and A.E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Vachaspati, A.E. Everett and A. Vilenkin, Radiation From Vacuum Strings and Domain Walls, Phys. Rev. D 30 (1984) 2046 [INSPIRE].
  25. [25]
    R.L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225 [INSPIRE].
  26. [26]
    A. Vilenkin and T. Vachaspati, Radiation of Goldstone Bosons From Cosmic Strings, Phys. Rev. D 35 (1987) 1138 [INSPIRE].
  27. [27]
    D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys. Lett. B 195 (1987) 361 [INSPIRE].
  28. [28]
    A. Ahmed and B.M. Dillon, Clockwork Goldstone Bosons, Phys. Rev. D 96 (2017) 115031 [arXiv:1612.04011] [INSPIRE].
  29. [29]
    G.F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Kehagias and A. Riotto, The Clockwork Supergravity, JHEP 02 (2018) 160 [arXiv:1710.04175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    G.F. Giudice, Y. Kats, M. McCullough, R. Torre and A. Urbano, Clockwork/linear dilaton: structure and phenomenology, JHEP 06 (2018) 009 [arXiv:1711.08437] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.F. Giudice and M. McCullough, Comment on “Disassembling the Clockwork Mechanism”, arXiv:1705.10162 [INSPIRE].
  33. [33]
    N. Craig, I. Garcia Garcia and D. Sutherland, Disassembling the Clockwork Mechanism, JHEP 10 (2017) 018 [arXiv:1704.07831] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    N. Craig and D. Sutherland, Exponential Hierarchies from Anderson Localization in Theory Space, Phys. Rev. Lett. 120 (2018) 221802 [arXiv:1710.01354] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Teresi, Clockwork without supersymmetry, Phys. Lett. B 783 (2018) 1 [arXiv:1802.01591] [INSPIRE].
  36. [36]
    P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental Targets for Photon Couplings of the QCD Axion, JHEP 02 (2018) 006 [arXiv:1709.06085] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].
  38. [38]
    C. Hagmann, S. Chang and P. Sikivie, Axions from string decay, Nucl. Phys. Proc. Suppl. 72 (1999) 81 [hep-ph/9807428] [INSPIRE].
  39. [39]
    T. Hiramatsu, M. Kawasaki, T. Sekiguchi, M. Yamaguchi and J. Yokoyama, Improved estimation of radiated axions from cosmological axionic strings, Phys. Rev. D 83 (2011) 123531 [arXiv:1012.5502] [INSPIRE].
  40. [40]
    T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion cosmology with long-lived domain walls, JCAP 01 (2013) 001 [arXiv:1207.3166] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Hagmann and P. Sikivie, Computer simulations of the motion and decay of global strings, Nucl. Phys. B 363 (1991) 247 [INSPIRE].
  42. [42]
    M. Nagasawa and M. Kawasaki, Collapse of axionic domain wall and axion emission, Phys. Rev. D 50 (1994) 4821 [astro-ph/9402066] [INSPIRE].
  43. [43]
    S. Chang, C. Hagmann and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev. D 59 (1999) 023505 [hep-ph/9807374] [INSPIRE].
  44. [44]
    C. Hagmann, S. Chang and P. Sikivie, Axion radiation from strings, Phys. Rev. D 63 (2001) 125018 [hep-ph/0012361] [INSPIRE].
  45. [45]
    A.J. Long, J.M. Hyde and T. Vachaspati, Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles, JCAP 09 (2014) 030 [arXiv:1405.7679] [INSPIRE].
  46. [46]
    T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Production of dark matter axions from collapse of string-wall systems, Phys. Rev. D 85 (2012) 105020 [Erratum ibid. D 86 (2012)089902] [arXiv:1202.5851] [INSPIRE].
  47. [47]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  48. [48]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].
  49. [49]
    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].
  50. [50]
    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].
  51. [51]
    P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].
  52. [52]
    D. Baumann, D. Green and B. Wallisch, New Target for Cosmic Axion Searches, Phys. Rev. Lett. 117 (2016) 171301 [arXiv:1604.08614] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    CMB-S4 collaboration, K.N. Abazajian et al., CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations