Advertisement

Holographic pump probe spectroscopy

  • A. Bagrov
  • B. Craps
  • F. Galli
  • V. Keränen
  • E. Keski-Vakkuri
  • J. Zaanen
Open Access
Regular Article - Theoretical Physics

Abstract

We study the non-linear response of a 2+1 dimensional holographic model with weak momentum relaxation and finite charge density to an oscillatory electric field pump pulse. Following the time evolution of one point functions after the pumping has ended, we find that deviations from thermality are well captured within the linear response theory. For electric pulses with a negligible zero frequency component the response approaches the instantaneously thermalizing form typical of holographic Vaidya models. We link this to the suppression of the amplitude of the quasinormal mode that governs the approach to equilibrium. In the large frequency limit, we are also able to show analytically that the holographic geometry takes the Vaidya form. A simple toy model captures these features of our holographic setup. Computing the out-of-equilibrium probe optical conductivity after the pump pulse, we similarly find that for high-frequency pulses the optical conductivity reaches its final equilibrium value effectively instantaneously. Pulses with significant DC components show exponential relaxation governed by twice the frequency of the vector quasinormal mode that governs the approach to equilibrium for the background solution. We explain this numerical factor in terms of a simple symmetry argument.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and applications, Cambridge University Press (2015) [INSPIRE].
  2. [2]
    J. Zaanen, Y.W. Sun, Y. Liu and K. Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press (2015) [INSPIRE].
  3. [3]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium Condensation Process in a Holographic Superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic Superfluids and the Dynamics of Symmetry Breaking, Phys. Rev. Lett. 110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].
  6. [6]
    P.M. Chesler, A.M. Garcia-Garcia and H. Liu, Defect Formation beyond Kibble-Zurek Mechanism and Holography, Phys. Rev. X 5 (2015) 021015 [arXiv:1407.1862] [INSPIRE].
  7. [7]
    J. Sonner, A. del Campo and W.H. Zurek, Universal far-from-equilibrium Dynamics of a Holographic Superconductor, arXiv:1406.2329 [INSPIRE].
  8. [8]
    N. Callebaut et al., Holographic Quenches and Fermionic Spectral Functions, JHEP 10 (2014) 172 [arXiv:1407.5975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.R. Das and T. Morita, Kibble-Zurek Scaling in Holographic Quantum Quench: Backreaction, JHEP 01 (2015) 084 [arXiv:1409.7361] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Camilo, B. Cuadros-Melgar and E. Abdalla, Holographic quenches towards a Lifshitz point, JHEP 02 (2016) 014 [arXiv:1511.08843] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H.B. Zeng, Y. Tian, Z.Y. Fan and C.-M. Chen, Nonlinear Transport in a Two Dimensional Holographic Superconductor, Phys. Rev. D 93 (2016) 121901 [arXiv:1604.08422] [INSPIRE].
  12. [12]
    H.-B. Zeng, Y. Tian, Z. Fan and C.-M. Chen, Nonlinear Conductivity of a Holographic Superconductor Under Constant Electric Field, Phys. Rev. D 95 (2017) 046014 [arXiv:1611.06798] [INSPIRE].
  13. [13]
    B. Withers, Nonlinear conductivity and the ringdown of currents in metallic holography, JHEP 10 (2016) 008 [arXiv:1606.03457] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Orenstein, Ultrafast spectroscopy of quantum materials, Phys. Today 65 (2012) 44.Google Scholar
  15. [15]
    S. Dal Conte et al., Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates, Nature Phys. 11 (2015) 421 [arXiv:1501.03833].ADSCrossRefGoogle Scholar
  16. [16]
    C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani, D. Mihailovic, Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach, Adv. Phys. 65 (2016) 58 [arXiv:1601.07204].ADSCrossRefGoogle Scholar
  17. [17]
    J.K. Freericks, O.P. Matveev, W. Shen, T.P. Devereaux, Theoretical description of pump/probe experiments in electron mediated charge-density-wave insulators, Phys. Scripta 92 (2017) 034007 [arXiv:1610.02613].
  18. [18]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  21. [21]
    M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].
  22. [22]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].
  24. [24]
    Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP 05 (2012) 054 [arXiv:1202.4458] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Bagrov, B. Craps, F. Galli, V. Keränen, E. Keski-Vakkuri and J. Zaanen, Holography and thermalization in optical pump-probe spectroscopy, Phys. Rev. D 97 (2018) 086005 [arXiv:1708.08279] [INSPIRE].
  26. [26]
    R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09 (2015) 090 [arXiv:1505.05092] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
  28. [28]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP 09 (2013) 026 [arXiv:1304.5172] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Ecker, D. Grumiller and S.A. Stricker, Evolution of holographic entanglement entropy in an anisotropic system, JHEP 07 (2015) 146 [arXiv:1506.02658] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z. Lenarcic, D. Golez, J. Bonca, P. Prelovsek, Optical response of highly excited particles in a strongly correlated system, Phys. Rev. B 89 (2014) 125123 [arXiv:1312.1962].
  34. [34]
    S. Cremonini, H.-S. Liu, H. Lü and C.N. Pope, DC Conductivities from Non-Relativistic Scaling Geometries with Momentum Dissipation, JHEP 04 (2017) 009 [arXiv:1608.04394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].
  36. [36]
    B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Andrade, A simple model of momentum relaxation in Lifshitz holography, arXiv:1602.00556 [INSPIRE].
  38. [38]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. He, F.-L. Lin and J.-j. Zhang, Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT, JHEP 08 (2017) 126 [arXiv:1703.08724] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].
  41. [41]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Schäfer and D. Teaney, Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas, Rept. Prog. Phys. 72 (2009) 126001 [arXiv:0904.3107] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • A. Bagrov
    • 1
  • B. Craps
    • 2
  • F. Galli
    • 3
  • V. Keränen
    • 4
  • E. Keski-Vakkuri
    • 4
  • J. Zaanen
    • 5
  1. 1.Institute for Molecules and MaterialsRadboud UniversityNijmegenThe Netherlands
  2. 2.Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) and International Solvay InstitutesBrusselsBelgium
  3. 3.Perimeter Institute for Theoretical PhysicsNorthCanada
  4. 4.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  5. 5.Instituut-Lorentz for Theoretical PhysicsUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations