Advertisement

Precise predictions for electroweakino-pair production in association with a jet at the LHC

  • Julien Baglio
  • Barbara Jäger
  • Matthias Kesenheimer
Open Access
Regular Article - Theoretical Physics

Abstract

We present the full NLO SUSY-QCD corrections to the pair production of neutralinos and charginos at the LHC in association with a jet and their matching to partonshower programs in the framework of the POWHEG-BOX package. The code we have developed provides a SUSY Les Houches Accord interface for setting electroweak and supersymmetric input parameters. Decays of the neutralinos and charginos and parton-shower effects can be simulated with multi-purpose programs such as PYTHIA. The capabilities of the code are illustrated by phenomenological results for a parameter point in the framework of pMSSM10, compatible with present experimental limits on supersymmetry. We find that NLO-QCD corrections as well as parton-shower effects are of primary importance for the appropriate description of jet distributions.

Keywords

NLO Computations Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  4. [4]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 208 [arXiv:1501.07110] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].
  7. [7]
    CMS collaboration, Search for electroweak production of charginos in final states with two tau leptons in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-14-022 (2014).
  8. [8]
    ATLAS collaboration, Search for the direct production of charginos and neutralinos in final states with tau leptons in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2017-035 (2017).
  9. [9]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in the two and three lepton final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-039 (2017).
  10. [10]
    CMS collaboration, Combined search for electroweak production of charginos and neutralinos in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-17-004 (2017).
  11. [11]
    W. Beenakker, M. Klasen, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
  12. [12]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  13. [13]
    J. Debove, B. Fuks and M. Klasen, Transverse-momentum resummation for gaugino-pair production at hadron colliders, Phys. Lett. B 688 (2010) 208 [arXiv:0907.1105] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    C.S. Li, Z. Li, R.J. Oakes and L.L. Yang, Threshold Resummation Effects in the Associated Production of Chargino and Neutralino at Hadron Colliders, Phys. Rev. D 77 (2008) 034010 [arXiv:0707.3952] [INSPIRE].
  15. [15]
    J. Debove, B. Fuks and M. Klasen, Threshold resummation for gaugino pair production at hadron colliders, Nucl. Phys. B 842 (2011) 51 [arXiv:1005.2909] [INSPIRE].
  16. [16]
    J. Debove, B. Fuks and M. Klasen, Joint Resummation for Gaugino Pair Production at Hadron Colliders, Nucl. Phys. B 849 (2011) 64 [arXiv:1102.4422] [INSPIRE].
  17. [17]
    B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].
  18. [18]
    H. Sun, L. Han, W.-G. Ma, R.-Y. Zhang, Y. Jiang and L. Guo, Full one-loop electroweak and NLO QCD corrections to the associated production of chargino and neutralino at hadron colliders, Phys. Rev. D 73 (2006) 055002 [hep-ph/0602089] [INSPIRE].
  19. [19]
    J. Baglio, B. Jäger and M. Kesenheimer, Electroweakino pair production at the LHC: NLO SUSY-QCD corrections and parton-shower effects, JHEP 07 (2016) 083 [arXiv:1605.06509] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  21. [21]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  23. [23]
    G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly Degenerate Gauginos and Dark Matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].
  24. [24]
    G. Cullen, N. Greiner and G. Heinrich, Susy-QCD corrections to neutralino pair production in association with a jet, Eur. Phys. J. C 73 (2013) 2388 [arXiv:1212.5154] [INSPIRE].
  25. [25]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    K.J. de Vries et al., The pMSSM10 after LHC Run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].
  27. [27]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  28. [28]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  29. [29]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  30. [30]
    T. Fritzsche, T. Hahn, S. Heinemeyer, F. von der Pahlen, H. Rzehak and C. Schappacher, The Implementation of the Renormalized Complex MSSM in FeynArts and FormCalc, Comput. Phys. Commun. 185 (2014) 1529 [arXiv:1309.1692] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S.P. Martin and M.T. Vaughn, Regularization dependence of running couplings in softly broken supersymmetry, Phys. Lett. B 318 (1993) 331 [hep-ph/9308222] [INSPIRE].
  33. [33]
    W. Hollik and D. Stöckinger, Regularization and supersymmetry restoring counterterms in supersymmetric QCD, Eur. Phys. J. C 20 (2001) 105 [hep-ph/0103009] [INSPIRE].
  34. [34]
    J.C. Collins, F. Wilczek and A. Zee, Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current, Phys. Rev. D 18 (1978) 242 [INSPIRE].
  35. [35]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
  36. [36]
    D. Gonçalves-Netto, D. López-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated Squark and Gluino Production to Next-to-Leading Order, Phys. Rev. D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].
  37. [37]
    R. Gavin et al., Matching Squark Pair Production at NLO with Parton Showers, JHEP 10 (2013) 187 [arXiv:1305.4061] [INSPIRE].
  38. [38]
    R. Gavin et al., Squark Production and Decay matched with Parton Showers at NLO, Eur. Phys. J. C 75 (2015) 29 [arXiv:1407.7971] [INSPIRE].
  39. [39]
    P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].
  40. [40]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  42. [42]
    M. Mühlleitner, A. Djouadi and Y. Mambrini, SDECAY: A fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].
  43. [43]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
  44. [44]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  45. [45]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  47. [47]
    ATLAS collaboration, Search for the direct production of charginos and neutralinos in final states with tau leptons in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 154 [arXiv:1708.07875] [INSPIRE].
  48. [48]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  49. [49]
    ATLAS collaboration, Monojet Analysis Performance Plots with 68-78 pb −1 of 13 TeV data collected by the ATLAS experiment, Tech. Rep. ATLAS-EXOT-2015-005, (2015).Google Scholar
  50. [50]
    D. Binosi and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].
  51. [51]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Julien Baglio
    • 1
    • 2
    • 3
  • Barbara Jäger
    • 1
  • Matthias Kesenheimer
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of TübingenTübingenGermany
  2. 2.Institute for Advanced StudyDurham UniversityDurhamUnited Kingdom
  3. 3.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamUnited Kingdom

Personalised recommendations