A μ-τ-philic scalar doublet under Zn flavor symmetry

  • Yoshihiko Abe
  • Takashi TomaEmail author
  • Koji Tsumura
Open Access
Regular Article - Theoretical Physics


We propose a minimal model which accommodates the long-standing anomaly of muon magnetic moment based on abelian discrete flavor symmetries. The standard model is extended by scalar doublets charged under a Zn lepton flavor symmetry. In these models, a large contribution to the muon magnetic moment can be obtained by the chirality enhancement from new scalar mediated diagrams without conflicting with the flavor symmetry. Thanks to the lepton flavor symmetry, these models automatically forbid lepton flavor violation. The minimal model is based on Z4 symmetry with only one extra scalar doublet. In this model, we show that the parameter space favored by the muon g − 2 can easily be consistent with experimental constraints and theoretical bounds such as the electroweak precision tests, lepton universality, potential stability condition and triviality bound as well as the LHC direct search mass bound. The new contributions to the muon electric dipole moment and the Higgs decay into γγ can be indirect signals of the model.


Beyond Standard Model Discrete Symmetries Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  2. [2]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({M}_{{}^Z}^2\right) \) : a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
  3. [3]
    J. Prades, E. de Rafael and A. Vainshtein, The hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic moments, Adv. Ser. Direct. High Energy Phys. 20 (2009) 303 [arXiv:0901.0306] [INSPIRE].
  4. [4]
    Muon g-2 collaboration, The muon g − 2 experiment at Fermilab, EPJ Web Conf. 137 (2017) 08001 [arXiv:1701.02807] [INSPIRE].
  5. [5]
    T. Abe, R. Sato and K. Yagyu, Muon specific two-Higgs-doublet model, JHEP 07 (2017) 012 [arXiv:1705.01469] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E.J. Chun and J. Kim, Leptonic precision test of leptophilic two-Higgs-doublet model, JHEP 07 (2016) 110 [arXiv:1605.06298] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Abe, R. Sato and K. Yagyu, Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly, JHEP 07 (2015) 064 [arXiv:1504.07059] [INSPIRE].
  8. [8]
    A. Crivellin, D. Müller and C. Wiegand, bsℓ + transitions in two-Higgs-doublet models, arXiv:1903.10440 [INSPIRE].
  9. [9]
    Y. Omura, E. Senaha and K. Tobe, Lepton-flavor-violating Higgs decay hμτ and muon anomalous magnetic moment in a general two Higgs doublet model, JHEP 05 (2015) 028 [arXiv:1502.07824] [INSPIRE].
  10. [10]
    Y. Omura, E. Senaha and K. Tobe, τ - and μ-physics in a general two Higgs doublet model with μ-τ flavor violation, Phys. Rev. D 94 (2016) 055019 [arXiv:1511.08880] [INSPIRE].
  11. [11]
    S. Baek, N.G. Deshpande, X.G. He and P. Ko, Muon anomalous g − 2 and gauged L μ -L τ models, Phys. Rev. D 64 (2001) 055006 [hep-ph/0104141] [INSPIRE].
  12. [12]
    E. Ma, D.P. Roy and S. Roy, Gauged L μ -L τ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos, Phys. Lett. B 525 (2002) 101 [hep-ph/0110146] [INSPIRE].
  13. [13]
    M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g − 2 and hydrogen spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].
  14. [14]
    M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs. LHC in supersymmetric models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].
  15. [15]
    W.J. Marciano, A. Masiero, P. Paradisi and M. Passera, Contributions of axionlike particles to lepton dipole moments, Phys. Rev. D 94 (2016) 115033 [arXiv:1607.01022] [INSPIRE].
  16. [16]
    S. Bar-Shalom, S. Nandi and A. Soni, Muon g − 2 and lepton flavor violation in a two Higgs doublets model for the fourth generation, Phys. Lett. B 709 (2012) 207 [arXiv:1112.3661] [INSPIRE].
  17. [17]
    C.-W. Chiang and K. Tsumura, Model with a gauged lepton flavor SU(2) symmetry, JHEP 05 (2018) 069 [arXiv:1712.00574] [INSPIRE].
  18. [18]
    K. Asai, K. Hamaguchi and N. Nagata, Predictions for the neutrino parameters in the minimal gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model, Eur. Phys. J. C 77 (2017) 763 [arXiv:1705.00419] [ INSPIRE].
  19. [19]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].
  20. [20]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  21. [21]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
  22. [22]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  23. [23]
    M.E. Peskin and J.D. Wells, How can a heavy Higgs boson be consistent with the precision electroweak measurements?, Phys. Rev. D 64 (2001) 093003 [hep-ph/0101342] [INSPIRE].
  24. [24]
    S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011) 303 [arXiv:1108.3297] [INSPIRE].
  25. [25]
    Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  26. [26]
    W.J. Marciano and A. Sirlin, Electroweak radiative corrections to τ decay, Phys. Rev. Lett. 61 (1988) 1815 [INSPIRE].
  27. [27]
    Heavy Flavor Averaging Group (HFAG) collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  28. [28]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  29. [29]
    ALEPH, DELPHI, L3, OPAL, LEP collaboration, Search for charged Higgs bosons: combined results using LEP data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions using the ATLAS detector, ATLAS-CONF-2019-008 (2019).
  32. [32]
    K. Asai, K. Hamaguchi, N. Nagata, S.-Y. Tseng and K. Tsumura, Minimal gauged \( \mathrm{U}{(1)}_{L_{\alpha }-{L}_{\beta }} \) models driven into a corner, Phys. Rev. D 99 (2019) 055029 [arXiv:1811.07571] [INSPIRE].
  33. [33]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  34. [34]
    S. Kanemura, K. Tsumura and H. Yokoya, Multi-τ -lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D 85 (2012) 095001 [arXiv:1111.6089] [INSPIRE].
  35. [35]
    Muon (g-2) collaboration, An improved limit on the muon electric dipole moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].
  36. [36]
    J. Price, Projected muon EDM sensitivity at FNAL and future plan, talprice kgiven at Workshop on future muon EDM searches at Fermilab and worldwide , October 1-12, Liverpool, U.K. (2018)
  37. [37]
    J-PARC g-’2 and EDM collaboration, A novel precision measurement of muon g − 2 and EDM at J-PARC, AIP Conf. Proc. 1467 (2012) 45.Google Scholar
  38. [38]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  39. [39]
    B. Swiezewska and M. Krawczyk, Diphoton rate in the inert doublet model with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE].
  40. [40]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb −1 of pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
  41. [41]
    CMS collaboration, Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2018) 185 [arXiv:1804.02716] [INSPIRE].
  42. [42]
    F. Staub, Automatic Calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan
  2. 2.Department of PhysicsMcGill UniversityMontréalCanada

Personalised recommendations