Advertisement

Non-Lorentzian RG flows and supersymmetry

  • Neil LambertEmail author
  • Rishi Mouland
Open Access
Regular Article - Theoretical Physics
  • 101 Downloads

Abstract

We describe a general process where a non-Lorentzian rescaling of a supersymmetric field theory leads to a scale-invariant fixed point action without Lorentz invariance but where the supersymmetry is preserved or even enhanced. We apply this procedure to five-dimensional maximally supersymmetric super-Yang-Mills, leading to a field theory with 24 super(conformal) symmetries. We also apply this procedure to the BLG model with 32 super(conformal) symmetries and ABJM models with 24 super(conformal) symmetries.

Keywords

Chern-Simons Theories Conformal and W Symmetry Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].
  2. [2]
    M. Leblanc, G. Lozano and H. Min, Extended superconformal Galilean symmetry in Chern-Simons matter systems, Annals Phys. 219 (1992) 328 [hep-th/9206039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    I.A. Bandos and P.K. Townsend, Light-cone M 5 and multiple M 2-branes, Class. Quant. Grav. 25 (2008) 245003 [arXiv:0806.4777] [INSPIRE].
  4. [4]
    D. Orlando and S. Reffert, On the perturbative expansion around a Lifshitz point, Phys. Lett. B 683 (2010) 62 [arXiv:0908.4429] [INSPIRE].
  5. [5]
    W. Xue, Non-relativistic supersymmetry, arXiv:1008.5102 [INSPIRE].
  6. [6]
    M. Gomes et al., Hořava-Lifshitz-like extensions of supersymmetric theories, Phys. Rev. D 90 (2014) 125022 [arXiv:1408.6499] [INSPIRE].
  7. [7]
    S. Chapman, Y. Oz and A. Raviv-Moshe, On supersymmetric Lifshitz field theories, JHEP 10 (2015) 162 [arXiv:1508.03338] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Galilean Yang-Mills theory, JHEP 04 (2016) 051 [arXiv:1512.08375] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    E.A. Gallegos, \( \mathcal{N}=1 \) \( \mathcal{D}=3 \) Lifshitz-Wess-Zumino model: A paradigm of reconciliation between Lifshitz-like operators and supersymmetry, Phys. Lett. B 793 (2019) 372 [arXiv:1806.01481] [INSPIRE].
  10. [10]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].
  11. [11]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].
  12. [12]
    J.L.F. Barbon and C.A. Fuertes, On the spectrum of nonrelativistic AdS/CFT, JHEP 09 (2008) 030 [arXiv:0806.3244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    W.D. Goldberger, AdS/CFT duality for non-relativistic field theory, JHEP 03 (2009) 069 [arXiv:0806.2867] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].
  18. [18]
    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].
  19. [19]
    N. Lambert and M. Owen, Non-Lorentzian field theories with maximal supersymmetry and moduli space dynamics, JHEP 10 (2018) 133 [arXiv:1808.02948] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super)gravity as a non-relativistic limit, Class. Quant. Grav. 32 (2015) 205003 [arXiv:1505.02095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    O. Aharony et al., Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].
  23. [23]
    P. Kucharski, N. Lambert and M. Owen, The (2, 0) superalgebra, null M-branes and Hitchins system, JHEP 10 (2017) 126 [arXiv:1706.00232] [INSPIRE].
  24. [24]
    N. Lambert and P. Richmond, (2, 0) supersymmetry and the light-cone description of M 5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].
  25. [25]
    N. Lambert and D. Sacco, M 2-branes and the (2, 0) superalgebra, JHEP 09 (2016) 107 [arXiv:1608.04748] [INSPIRE].
  26. [26]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].
  27. [27]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M 2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].
  28. [28]
    A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].
  29. [29]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  30. [30]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M 2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].
  31. [31]
    J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [INSPIRE].
  32. [32]
    N. Lambert, A. Lipstein and P. Richmond, Non-Lorentzian M 5-brane theories from holography, arXiv:1904.07547 [INSPIRE].
  33. [33]
    A. Bilal, Remarks on defining the DLCQ of quantum field theory as a lightlike limit, hep-th/9909220 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations