Inferring the covariant Θ-exact noncommutative coupling in the top quark pair production at linear colliders

  • J. SelvaganapathyEmail author
  • Partha Konar
  • Prasanta Kumar Das
Open Access
Regular Article - Theoretical Physics


A novel non-minimal interaction of neutral right-handed fermion and abelian gauge field in the covariant Θ-exact noncommutative standard model (NCSM) which is invariant under Very Special Relativity (VSR) Lorentz subgroup, opens an avenue to study the top quark pair production at linear colliders. Here the non-minimal coupling is denoted as κ and the noncommutative (NC) scale Λ. In this work, we consider two types of analysis, one is without considering helicity basis technique and another, considering helicity of the initial and final state particles. Further, the realistic electron and positron beam polarization are taken into account to measure the NC parameters. In the first case, when κ is positive and certain values of Λ, we found that a specific threshold value of machine energy (optimal energy in the units of GeV) \( \sqrt{s_0}\left(\simeq 2.52\ \varLambda +39\right) \) may be quite useful to look for the signature of the spacetime noncommutativity with unpolarized beam. The statistical χ2 analysis of the azimuthal anisotropy which is due to broken rotational invariance about the beam axis, is quite possible when κ takes negative value 0 > κ > −0.596 which persuade a lower limit on NC scale Λ (1.0 to 2.4 TeV) at κmax = −0.296 with 95% C.L according to luminosity ranging from 100 fb−1 to 1000 fb−1 at machine energy \( \sqrt{s}=1.4 \) TeV and 3.0 TeV. In another case, we perform detailed analysis for the polarized and unpolarized electron-positron beam to probe spacetime noncommutativity in light of following observables like azimuthal anisotropy, helicity correlation, and top quark helicity left-right asymmetry. The polarization of the initial beam {Pe, Pe+ } = {−0.8, 0.3}({−0.8, 0.6}) enhances the ranges of lower limit on Λ, i.e. 1.13 to 2.80 TeV at κmax alongside the κmax enhanced into −0.5445 (−0.607) 95%C.L accord with luminosity and machine energy. Finally, we studied the intriguing mixing of the UV and the IR by invoking a specific structure of noncommutative anti-symmetric tensor Θμν which is invariant under translational T (2) VSR Lorentz subgroup.


Strings and branes phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
  3. [3]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998) 008 [hep-th/9711165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Seiberg, L. Susskind and N. Toumbas, Strings in background electric field, space/time noncommutativity and a new noncritical string theory, JHEP 06 (2000) 021 [hep-th/0005040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [INSPIRE].
  9. [9]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].
  10. [10]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    I. Riad and M.M. Sheikh-Jabbari, Noncommutative QED and anomalous dipole moments, JHEP 08 (2000) 045 [hep-th/0008132] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Jurčo and P. Schupp, Noncommutative Yang-Mills from equivalence of star products, Eur. Phys. J. C 14 (2000) 367 [hep-th/0001032] [INSPIRE].
  13. [13]
    T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996) 53 [INSPIRE].
  14. [14]
    C.P. Martin and D. Sánchez-Ruiz, The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative R 4, Phys. Rev. Lett. 83 (1999) 476 [hep-th/9903077] [INSPIRE].
  15. [15]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Van Raamsdonk and N. Seiberg, Comments on noncommutative perturbative dynamics, JHEP 03 (2000) 035 [hep-th/0002186] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    A.F. Ferrari et al., Superfield covariant analysis of the divergence structure of noncommutative supersymmetric QED(4), Phys. Rev. D 69 (2004) 025008 [hep-th/0309154] [INSPIRE].
  18. [18]
    A.F. Ferrari et al., Towards a consistent noncommutative supersymmetric Yang-Mills theory: Superfield covariant analysis, Phys. Rev. D 70 (2004) 085012 [hep-th/0407040] [INSPIRE].
  19. [19]
    J. Trampetic and J. You, θ-exact Seiberg-Witten maps at order e 3, Phys. Rev. D 91 (2015) 125027 [arXiv:1501.00276] [INSPIRE].
  20. [20]
    R. Horvat, J. Trampetić and J. You, Photon self-interaction on deformed spacetime, Phys. Rev. D 92 (2015) 125006 [arXiv:1510.08691] [INSPIRE].
  21. [21]
    C.P. Martin, J. Trampetic and J. You, Super Yang-Mills and θ-exact Seiberg-Witten map: absence of quadratic noncommutative IR divergences, JHEP 05 (2016) 169 [arXiv:1602.01333] [INSPIRE].
  22. [22]
    C.P. Martin, J. Trampetic and J. You, Equivalence of quantum field theories related by the θ-exact Seiberg-Witten map, Phys. Rev. D 94 (2016) 041703 [arXiv:1606.03312] [INSPIRE].
  23. [23]
    C.P. Martin, J. Trampetic and J. You, Quantum duality under the θ-exact Seiberg-Witten map, JHEP 09 (2016) 052 [arXiv:1607.01541] [INSPIRE].
  24. [24]
    C.P. Martin, J. Trampetic and J. You, Quantum noncommutative ABJM theory: first steps, JHEP 04 (2018) 070 [arXiv:1711.09664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Grosse and M. Wohlgenannt, On κ-deformation and UV/IR mixing, Nucl. Phys. B 748 (2006) 473 [hep-th/0507030] [INSPIRE].
  26. [26]
    S. Meljanac, A. Samsarov, J. Trampetic and M. Wohlgenannt, Scalar field propagation in the ϕ 4 κ-Minkowski model, JHEP 12 (2011) 010 [arXiv:1111.5553] [INSPIRE].
  27. [27]
    S. Meljanac, S. Mignemi, J. Trampetic and J. You, Nonassociative Snyder ϕ 4 Quantum Field Theory, Phys. Rev. D 96 (2017) 045021 [arXiv:1703.10851] [INSPIRE].
  28. [28]
    S. Meljanac, S. Mignemi, J. Trampetic and J. You, UV-IR mixing in nonassociative Snyder \( \phi \) 4 theory, Phys. Rev. D 97 (2018) 055041 [arXiv:1711.09639] [INSPIRE].
  29. [29]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].
  30. [30]
    D. Lüst and E. Palti, Scalar Fields, Hierarchical UV/IR Mixing and The Weak Gravity Conjecture, JHEP 02 (2018) 040 [arXiv:1709.01790] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    N. Craig, Naturalness and New Approaches to the Hierarchy Problem, PiTP 2017 Lectures, [].
  32. [32]
    A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the noncommutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.P. Balachandran, T.R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi and S. Vaidya, Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [INSPIRE].
  34. [34]
    D.N. Blaschke, F. Gieres, E. Kronberger, T. Reis, M. Schweda and R.I.P. Sedmik, Quantum Corrections for Translation-Invariant Renormalizable Non-Commutative Phi**4 Theory, JHEP 11 (2008) 074 [arXiv:0807.3270] [INSPIRE].
  35. [35]
    H. Grosse and R. Wulkenhaar, Renormalization of ϕ 4 theory on noncommutative2 in the matrix base, JHEP 12 (2003) 019 [hep-th/0307017] [INSPIRE].
  36. [36]
    H. Grosse and F. Vignes-Tourneret, Quantum field theory on the degenerate Moyal space, J. Noncommut. Geom. 4 (2010) 555 [arXiv:0803.1035] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  37. [37]
    R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, A Translation-invariant renormalizable non-commutative scalar model, Commun. Math. Phys. 287 (2009) 275 [arXiv:0802.0791] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda and R. Wulkenhaar, Renormalization of the noncommutative photon selfenergy to all orders via Seiberg-Witten map, JHEP 06 (2001) 013 [hep-th/0104097] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.P. Martin, The Gauge anomaly and the Seiberg-Witten map, Nucl. Phys. B 652 (2003) 72 [hep-th/0211164] [INSPIRE].
  40. [40]
    L. Álvarez-Gaumé and M.A. Vazquez-Mozo, General properties of noncommutative field theories, Nucl. Phys. B 668 (2003) 293 [hep-th/0305093] [INSPIRE].
  41. [41]
    F. Brandt, C.P. Martin and F.R. Ruiz, Anomaly freedom in Seiberg-Witten noncommutative gauge theories, JHEP 07 (2003) 068 [hep-th/0307292] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    M. Burić, V. Radovanović and J. Trampetic, The one-loop renormalization of the gauge sector in the θ-expanded noncommutative standard model, JHEP 03 (2007) 030 [hep-th/0609073] [INSPIRE].
  43. [43]
    P. Schupp and J. You, UV/IR mixing in noncommutative QED defined by Seiberg-Witten map, JHEP 08 (2008) 107 [arXiv:0807.4886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    R. Horvat and J. Trampetic, Constraining noncommutative field theories with holography, JHEP 01 (2011) 112 [arXiv:1009.2933] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    R. Horvat, A. Ilakovac, J. Trampetic and J. You, On UV/IR mixing in noncommutative gauge field theories, JHEP 12 (2011) 081 [arXiv:1109.2485] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    R. Horvat, A. Ilakovac, J. Trampetic and J. You, Self-energies on deformed spacetimes, JHEP 11 (2013) 071 [arXiv:1306.1239] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Horvat, A. Ilakovac, P. Schupp, J. Trampetic and J. You, Neutrino propagation in noncommutative spacetimes, JHEP 04 (2012) 108 [arXiv:1111.4951] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl. Phys. B 591 (2000) 265 [hep-th/0005129] [INSPIRE].
  49. [49]
    O. Aharony, J. Gomis and T. Mehen, On theories with lightlike noncommutativity, JHEP 09 (2000) 023 [hep-th/0006236] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane and T. Okamoto, Noncommutative field theory and Lorentz violation, Phys. Rev. Lett. 87 (2001) 141601 [hep-th/0105082] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for noncommutative QED at high-energy e+ecolliders, eConf C 010630 (2001) E3064 [hep-ph/0201275] [INSPIRE].
  52. [52]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for noncommutative interactions at linear colliders, Phys. Rev. D 64 (2001) 075012 [hep-ph/0010354] [INSPIRE].
  53. [53]
    P. Mathews, Compton scattering in noncommutative space-time at the NLC, Phys. Rev. D 63 (2001) 075007 [hep-ph/0011332] [INSPIRE].
  54. [54]
    T.G. Rizzo, Signals for noncommutative QED at future e + e colliders, Int. J. Mod. Phys. A 18 (2003) 2797 [hep-ph/0203240] [INSPIRE].
  55. [55]
    I. Hinchliffe, N. Kersting and Y.L. Ma, Review of the phenomenology of noncommutative geometry, Int. J. Mod. Phys. A 19 (2004) 179 [hep-ph/0205040] [INSPIRE].
  56. [56]
    X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The Standard model on noncommutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [INSPIRE].
  57. [57]
    X. Calmet and M. Wohlgenannt, Effective field theories on noncommutative space-time, Phys. Rev. D 68 (2003) 025016 [hep-ph/0305027] [INSPIRE].
  58. [58]
    B. Melic, K. Passek-Kumericki and J. Trampetic, Quarkonia decays into two photons induced by the space-time non-commutativity, Phys. Rev. D 72 (2005) 054004 [hep-ph/0503133] [INSPIRE].
  59. [59]
    A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [INSPIRE].
  60. [60]
    T. Ohl and C. Speckner, The Noncommutative Standard Model and Polarization in Charged Gauge Boson Production at the LHC, Phys. Rev. D 82 (2010) 116011 [arXiv:1008.4710] [INSPIRE].
  61. [61]
    S. Yaser Ayazi, S. Esmaeili and M. Mohammadi-Najafabadi, Single top quark production in t-channel at the LHC in Noncommutative Space-Time, Phys. Lett. B 712 (2012) 93 [arXiv:1202.2505] [INSPIRE].
  62. [62]
    R.S. Manohar, J. Selvaganapathy and P.K. Das, Probing space-time noncommutativity in the top quark pair production at e + e collider, Int. J. Mod. Phys. A 29 (2014) 1450156 [INSPIRE].
  63. [63]
    J. Selvaganapathy, P.K. Das and P. Konar, Search for associated production of Higgs with Z boson in the noncommutative Standard Model at linear colliders, Int. J. Mod. Phys. A 30 (2015) 1550159 [arXiv:1509.06478] [INSPIRE].
  64. [64]
    J. Selvaganapathy, P.K. Das and P. Konar, Drell-Yan process as an avenue to test a noncommutative standard model at the Large Hadron Collider, Phys. Rev. D 93 (2016) 116003 [arXiv:1602.02997] [INSPIRE].
  65. [65]
    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J. C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].
  66. [66]
    CLICdp collaboration, Top-Quark Physics at the CLIC Electron-Positron Linear Collider, arXiv:1807.02441 [INSPIRE].
  67. [67]
    W. Behr, N.G. Deshpande, G. Duplancic, P. Schupp, J. Trampetic and J. Wess, The Zγγ,gg decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [INSPIRE].
  68. [68]
    P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Noncommutative GUTs, standard model and C,P,T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214] [INSPIRE].
  69. [69]
    G. Duplancic, P. Schupp and J. Trampetic, Comment on triple gauge boson interactions in the noncommutative electroweak sector, Eur. Phys. J. C 32 (2003) 141 [hep-ph/0309138] [INSPIRE].
  70. [70]
    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Nonzero Zγγ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007) 097701 [hep-ph/0611299] [INSPIRE].
  71. [71]
    M.M. Ettefaghi and M. Haghighat, Lorentz Conserving Noncommutative Standard Model, Phys. Rev. D 75 (2007) 125002 [hep-ph/0703313] [INSPIRE].
  72. [72]
    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The Standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [INSPIRE].
  73. [73]
    R. Horvat, A. Ilakovac, P. Schupp, J. Trampetic and J.-Y. You, Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory, Phys. Lett. B 715 (2012) 340 [arXiv:1109.3085] [INSPIRE].
  74. [74]
    P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The Photon neutrino interaction in noncommutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405 [hep-ph/0212292] [INSPIRE].
  75. [75]
    R. Horvat and J. Trampetic, Constraining spacetime noncommutativity with primordial nucleosynthesis, Phys. Rev. D 79 (2009) 087701 [arXiv:0901.4253] [INSPIRE].
  76. [76]
    R. Horvat, D. Kekez and J. Trampetic, Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83 (2011) 065013 [arXiv:1005.3209] [INSPIRE].
  77. [77]
    R. Horvat, J. Trampetic and J. You, Spacetime Deformation Effect on the Early Universe and the PTOLEMY Experiment, Phys. Lett. B 772 (2017) 130 [arXiv:1703.04800] [INSPIRE].
  78. [78]
    R. Horvat, J. Trampetic and J. You, Inferring type and scale of noncommutativity from the PTOLEMY experiment, Eur. Phys. J. C 78 (2018) 572 [arXiv:1711.09643] [INSPIRE].
  79. [79]
    D. Green et al., Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics, arXiv:1903.04763 [INSPIRE].
  80. [80]
    A.G. Cohen and S.L. Glashow, Very special relativity, Phys. Rev. Lett. 97 (2006) 021601 [hep-ph/0601236] [INSPIRE].
  81. [81]
    X. Calmet, Space-time symmetries of noncommutative spaces, Phys. Rev. D 71 (2005) 085012 [hep-th/0411147] [INSPIRE].
  82. [82]
    X. Calmet, Symmetries, Microcausality and Physics on Canonical Noncommutative Spacetime, in Proceedings, 41st Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Val d’Aoste, Italy, Mar 11-18, 2006, pp. 227-232 (2006) [hep-th/0605033] [INSPIRE].
  83. [83]
    M.M. Sheikh-Jabbari and A. Tureanu, Realization of Cohen-Glashow Very Special Relativity on Noncommutative Space-Time, Phys. Rev. Lett. 101 (2008) 261601 [arXiv:0806.3699] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    W. Wang, F. Tian and Z.-M. Sheng, Higgsstrahlung and pair production in e + e collision in the noncommutative standard model, Phys. Rev. D 84 (2011) 045012 [arXiv:1105.0252] [INSPIRE].
  85. [85]
    W. Wang, J.-H. Huang and Z.-M. Sheng, TeV Scale Phenomenology of e + e μ + μ Scattering in the Noncommutative Standard Model with Hybrid Gauge Transformation, Phys. Rev. D 86 (2012) 025003 [arXiv:1205.0666] [INSPIRE].
  86. [86]
    W. Wang, J.-H. Huang and Z.-M. Sheng, Bound on noncommutative standard model with hybrid gauge transformation via lepton flavor conserving Z decay, Phys. Rev. D 88 (2013) 025031 [arXiv:1306.1331] [INSPIRE].
  87. [87]
    Z. Rezaei and S. Paktinat Mehdiabadi, The LHC Drell-Yan Measurements as a Constraint for the Noncommutative Space-Time, arXiv:1809.04502 [INSPIRE].
  88. [88]
    M. Ghasemkhani, R. Goldouzian, H. Khanpour, M. Khatiri Yanehsari and M. Mohammadi Najafabadi, Higgs production in e e + collisions as a probe of noncommutativity, PTEP 2014 (2014) 081B01 [arXiv:1407.3167] [INSPIRE].
  89. [89]
    H.E. Haber, Spin formalism and applications to new physics searches, in Spin structure in high-energy processes: Proceedings, 21st SLAC Summer Institute on Particle Physics, 26 July-6 August 1993, Stanford, CA, pp. 231-272 (1994) [hep-ph/9405376] [INSPIRE].
  90. [90]
    G. Moortgat-Pick et al., The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider, Phys. Rept. 460 (2008) 131 [hep-ph/0507011] [INSPIRE].
  91. [91]
    J. Kodaira, T. Nasuno and S.J. Parke, QCD corrections to spin correlations in top quark production at lepton colliders, Phys. Rev. D 59 (1998) 014023 [hep-ph/9807209] [INSPIRE].
  92. [92]
    G. Mahlon and S.J. Parke, Spin Correlation Effects in Top Quark Pair Production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [INSPIRE].
  93. [93]
    A.F. Falk and M.E. Peskin, Production, decay and polarization of excited heavy hadrons, Phys. Rev. D 49 (1994) 3320 [hep-ph/9308241] [INSPIRE].
  94. [94]
    I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kuhn and P.M. Zerwas, Production and Decay Properties of Ultraheavy Quarks, Phys. Lett. B 181 (1986) 157 [INSPIRE].
  95. [95]
    D0 collaboration, Measurement of Spin Correlation between Top and Antitop Quarks Produced in \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 757 (2016) 199 [arXiv:1512.08818] [INSPIRE].
  96. [96]
    Y. Grossman and I. Nachshon, Hadronization, spin and lifetimes, JHEP 07 (2008) 016 [arXiv:0803.1787] [INSPIRE].ADSGoogle Scholar
  97. [97]
    S. Willenbrock, The Standard model and the top quark, NATO Sci. Ser. II 123 (2003) 1 [hep-ph/0211067] [INSPIRE].
  98. [98]
    G.L. Kane, G.A. Ladinsky and C.P. Yuan, Using the Top Quark for Testing Standard Model Polarization and CP Predictions, Phys. Rev. D 45 (1992) 124 [INSPIRE].
  99. [99]
    G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [INSPIRE].
  100. [100]
    S.J. Parke and Y. Shadmi, Spin correlations in top quark pair production at e + e colliders, Phys. Lett. B 387 (1996) 199 [hep-ph/9606419] [INSPIRE].
  101. [101]
    CDF collaboration, Measurement of the helicity of W bosons in top quark decays, Phys. Rev. Lett. 84 (2000) 216 [hep-ex/9909042] [INSPIRE].
  102. [102]
    G.J. Gounaris and F.M. Renard, A supersimple analysis of \( {e}^{-}{e}^{+}\to t\overline{t} \) at high energy, Phys. Rev. D 86 (2012) 013003 [arXiv:1205.4547] [INSPIRE].
  103. [103]
    J. Baglio et al., The Left-Right asymmetry of top quarks in associated top-charged Higgs bosons at the LHC as a probe of the tan β parameter, Phys. Lett. B 705 (2011) 212 [arXiv:1109.2420] [INSPIRE].
  104. [104]
    CDF collaboration, Measurement of \( t\overline{t} \) Spin Correlation in \( p\overline{p} \) Collisions Using the CDF II Detector at the Tevatron, Phys. Rev. D 83 (2011) 031104 [arXiv:1012.3093] [INSPIRE].
  105. [105]
    N. Mahajan, tbW in noncommutative standard model, Phys. Rev. D 68 (2003) 095001 [hep-ph/0304235] [INSPIRE].
  106. [106]
    M. Mohammadi Najafabadi, Semi-leptonic decay of a polarized top quark in the noncommutative standard model, Phys. Rev. D 74 (2006) 025021 [hep-ph/0606017] [INSPIRE].
  107. [107]
    Z. Rezaei and R. Salehi, Azimuthal correlation function of polarized top quark in noncommutative space-time, Annals Phys. 406 (2019) 71 [arXiv:1804.07688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    A.G. Grozin, Lectures on perturbative HQET. 1, hep-ph/0008300 [INSPIRE].
  109. [109]
    A. Grozin, Lectures on QED and QCD, hep-ph/0508242 [INSPIRE].
  110. [110]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, 7th edition, Academic Press, U.S.A. (2007).Google Scholar
  111. [111]
    R. Gopakumar, S. Minwalla and A. Strominger, Noncommutative solitons, JHEP 05 (2000) 020 [hep-th/0003160] [INSPIRE].
  112. [112]
    M. Aganagic, R. Gopakumar, S. Minwalla and A. Strominger, Unstable solitons in noncommutative gauge theory, JHEP 04 (2001) 001 [hep-th/0009142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  113. [113]
    Q.-G. Huang and J.-H. She, Weak Gravity Conjecture for Noncommutative Field Theory, JHEP 12 (2006) 014 [hep-th/0611211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    M. Li, W. Song, Y. Song and T. Wang, A Weak gravity conjecture for scalar field theories, JHEP 05 (2007) 026 [hep-th/0606011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics Group, Physical Research LaboratoryAhmedabadIndia
  2. 2.Department of Physics, BITS-PilaniGoaIndia

Personalised recommendations