Advertisement

autoboot: a generator of bootstrap equations with global symmetry

  • Mocho GoEmail author
  • Yuji Tachikawa
Open Access
Regular Article - Theoretical Physics
  • 58 Downloads

Abstract

We introduce autoboot, a Mathematica program which automatically generates mixed correlator bootstrap equations of an arbitrary number of scalar external operators, given the global symmetry group and the representations of the operators. The output is a Python program which uses Ohtsuki’s cboot which in turn uses Simmons-Duffin’s sdpb. The code is available at https://github.com/selpoG/autoboot/.

In an appendix we also discuss a simple technique to significantly reduce the time to run sdpb, which we call hot-starting.

Keywords

Conformal Field Theory Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].
  2. [2]
    V.K. Dobrev et al., Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys. 91 (2019) 15002 [arXiv:1805.04405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
  5. [5]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
  6. [6]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
  7. [7]
    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
  8. [8]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].
  9. [9]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].
  10. [10]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].
  11. [11]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].
  12. [12]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
  13. [13]
    S. Rychkov, Conformal bootstrap in three dimensions?, arXiv:1111.2115 [INSPIRE].
  14. [14]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
  15. [15]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].
  16. [16]
    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].
  18. [18]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].
  19. [19]
    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP 09 (2014) 144 [arXiv:1310.3757] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].
  21. [21]
    M. Berkooz, R. Yacoby and A. Zait, Bounds on \( \mathcal{N}=1 \) superconformal theories with global symmetries, JHEP 08 (2014) 008 [Erratum ibid. 01 (2015) 132] [arXiv:1402.6068] [INSPIRE].
  22. [22]
    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  23. [23]
    Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].
  24. [24]
    Y. Nakayama and T. Ohtsuki, Five dimensional O(N)-symmetric CFTs from conformal bootstrap, Phys. Lett. B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].
  25. [25]
    L.F. Alday and A. Bissi, Generalized bootstrap equations for \( \mathcal{N}=4 \) SCFT, JHEP 02 (2015) 101 [arXiv:1404.5864] [INSPIRE].
  26. [26]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].
  27. [27]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].
  28. [28]
    F. Caracciolo, A. Castedo Echeverri, B. von Harling and M. Serone, Bounds on OPE coefficients in 4D conformal field theories, JHEP 10 (2014) 020 [arXiv:1406.7845] [INSPIRE].
  29. [29]
    Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev. D 91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].
  30. [30]
    J.-B. Bae and S.-J. Rey, Conformal bootstrap approach to O(N) fixed points in five dimensions, arXiv:1412.6549 [INSPIRE].
  31. [31]
    C. Beem et al., The \( \mathcal{N}=2 \) superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].
  32. [32]
    S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev. D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].
  33. [33]
    D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with Four Supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  35. [35]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].
  36. [36]
    S.M. Chester et al., Accidental symmetries and the conformal bootstrap, JHEP 01 (2016) 110 [arXiv:1507.04424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].
  38. [38]
    L. Iliesiu et al., Bootstrapping 3D fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].
  39. [39]
    D. Poland and A. Stergiou, Exploring the minimal 4D \( \mathcal{N}=1 \) SCFT, JHEP 12 (2015) 121 [arXiv:1509.06368] [INSPIRE].
  40. [40]
    M. Lemos and P. Liendo, Bootstrapping \( \mathcal{N}=2 \) chiral correlators, JHEP 01 (2016) 025 [arXiv:1510.03866] [INSPIRE].
  41. [41]
    Y.-H. Lin et al., \( \mathcal{N}=4 \) superconformal bootstrap of the K3 CFT, JHEP 05 (2017) 126 [arXiv:1511.04065] [INSPIRE].
  42. [42]
    S.M. Chester, L.V. Iliesiu, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models with four supercharges in 3 ≤ d ≤ 4, JHEP 05 (2016) 103 [arXiv:1511.07552] [INSPIRE].
  43. [43]
    S.M. Chester and S.S. Pufu, Towards bootstrapping QED 3, JHEP 08 (2016) 019 [arXiv:1601.03476] [INSPIRE].
  44. [44]
    Y. Nakayama, Bootstrapping critical Ising model on three-dimensional real projective space, Phys. Rev. Lett. 116 (2016) 141602 [arXiv:1601.06851] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Behan, PyCFTBoot: a flexible interface for the conformal bootstrap, Commun. Comput. Phys. 22 (2017) 1 [arXiv:1602.02810] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    Y. Nakayama and T. Ohtsuki, Conformal bootstrap dashing hopes of emergent symmetry, Phys. Rev. Lett. 117 (2016) 131601 [arXiv:1602.07295] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    H. Iha, H. Makino and H. Suzuki, Upper bound on the mass anomalous dimension in many-flavor gauge theories: a conformal bootstrap approach, PTEP 2016 (2016) 053B03 [arXiv:1603.01995] [INSPIRE].
  48. [48]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].
  49. [49]
    Y. Nakayama, Bootstrap bound for conformal multi-flavor QCD on lattice, JHEP 07 (2016) 038 [arXiv:1605.04052] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Castedo Echeverri, B. von Harling and M. Serone, The effective bootstrap, JHEP 09 (2016) 097 [arXiv:1606.02771] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    Z. Li and N. Su, Bootstrapping mixed correlators in the five dimensional critical O(N) models, JHEP 04 (2017) 098 [arXiv:1607.07077] [INSPIRE].
  52. [52]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2, 2) superconformal bootstrap in two dimensions, JHEP 05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
  53. [53]
    J.-B. Bae, K. Lee and S. Lee, Bootstrapping pure quantum gravity in AdS 3, arXiv:1610.05814 [INSPIRE].
  54. [54]
    J.-B. Bae, D. Gang and J. Lee, 3d \( \mathcal{N}=2 \) minimal SCFTs from wrapped M 5-branes, JHEP 08 (2017) 118 [arXiv:1610.09259] [INSPIRE].
  55. [55]
    M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \( \mathcal{N}=3 \) superconformal theories, JHEP 04 (2017) 032 [arXiv:1612.01536] [INSPIRE].
  56. [56]
    C. Beem, L. Rastelli and B.C. van Rees, More \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
  57. [57]
    D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D \( \mathcal{N}=1 \) SCFTs, JHEP 07 (2017) 029 [arXiv:1702.00404] [INSPIRE].
  58. [58]
    M. Cornagliotto, M. Lemos and V. Schomerus, Long multiplet bootstrap, JHEP 10 (2017) 119 [arXiv:1702.05101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    Y. Nakayama, Bootstrap experiments on higher dimensional CFTs, Int. J. Mod. Phys. A 33 (2018) 1850036 [arXiv:1705.02744] [INSPIRE].
  60. [60]
    A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, JHEP 05 (2019) 098 [arXiv:1705.04278] [INSPIRE].
  61. [61]
    C.-M. Chang and Y.-H. Lin, Carving out the end of the world or (superconformal bootstrap in six dimensions), JHEP 08 (2017) 128 [arXiv:1705.05392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    G.F. Cuomo, D. Karateev and P. Kravchuk, General bootstrap equations in 4D CFTs, JHEP 01 (2018) 130 [arXiv:1705.05401] [INSPIRE].
  63. [63]
    C.A. Keller, G. Mathys and I.G. Zadeh, Bootstrapping chiral CFTs at genus two, Adv. Theor. Math. Phys. 22 (2018) 1447 [arXiv:1705.05862] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  64. [64]
    M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP 04 (2019) 022 [arXiv:1705.05865] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    Z. Li and N. Su, 3D CFT Archipelago from Single Correlator Bootstrap, arXiv:1706.06960 [INSPIRE].
  66. [66]
    A. Dymarsky et al., The 3d stress-tensor bootstrap, JHEP 02 (2018) 164 [arXiv:1708.05718] [INSPIRE].
  67. [67]
    J.-B. Bae, S. Lee and J. Song, Modular constraints on conformal field theories with currents, JHEP 12 (2017) 045 [arXiv:1708.08815] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on flavored 2d CFT partition functions, JHEP 02 (2018) 148 [arXiv:1709.01533] [INSPIRE].
  69. [69]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, charges, instantons and bootstrap: a five-dimensional odyssey, JHEP 03 (2018) 123 [arXiv:1710.08418] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    M. Cornagliotto, M. Lemos and P. Liendo, Bootstrapping the (A 1 , A 2) Argyres-Douglas theory, JHEP 03 (2018) 033 [arXiv:1711.00016] [INSPIRE].
  71. [71]
    N.B. Agmon, S.M. Chester and S.S. Pufu, Solving M-theory with the conformal bootstrap, JHEP 06 (2018) 159 [arXiv:1711.07343] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    J. Rong and N. Su, Scalar CFTs and their large N limits, JHEP 09 (2018) 103 [arXiv:1712.00985] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    M. Baggio et al., Decoding a three-dimensional conformal manifold, JHEP 02 (2018) 062 [arXiv:1712.02698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    A. Stergiou, Bootstrapping hypercubic and hypertetrahedral theories in three dimensions, JHEP 05 (2018) 035 [arXiv:1801.07127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    C. Hasegawa and Y. Nakayama, Three ways to solve critical ϕ 4 theory on 4 − ϵ dimensional real projective space: perturbation, bootstrap and Schwinger-Dyson equation, Int. J. Mod. Phys. A 33 (2018) 1850049 [arXiv:1801.09107] [INSPIRE].
  76. [76]
    P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP 10 (2018) 077 [arXiv:1806.01862] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    J. Rong and N. Su, Bootstrapping minimal \( \mathcal{N}=1 \) superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].
  78. [78]
    A. Atanasov, A. Hillman and D. Poland, Bootstrapping the minimal 3D SCFT, JHEP 11 (2018) 140 [arXiv:1807.05702] [INSPIRE].
  79. [79]
    C. Behan, Bootstrapping the long-range Ising model in three dimensions, J. Phys. A 52 (2019) 075401 [arXiv:1810.07199] [INSPIRE].
  80. [80]
    S.R. Kousvos and A. Stergiou, Bootstrapping mixed correlators in three-dimensional cubic theories, SciPost Phys. 6 (2019) 035 [arXiv:1810.10015] [INSPIRE].
  81. [81]
    A. Cappelli, L. Maffi and S. Okuda, Critical Ising model in varying dimension by conformal bootstrap, JHEP 01 (2019) 161 [arXiv:1811.07751] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    C.N. Gowdigere, J. Santara and Sumedha, Conformal bootstrap signatures of the tricritical Ising universality class, arXiv:1811.11442 [INSPIRE].
  83. [83]
    Z. Li, Solving QED 3 with conformal bootstrap, arXiv:1812.09281 [INSPIRE].
  84. [84]
    D. Karateev, P. Kravchuk, M. Serone and A. Vichi, Fermion conformal bootstrap in 4d, arXiv:1902.05969 [INSPIRE].
  85. [85]
    E. El-Schowk, Solving conformal theory with bootstrap, in Lecture at the 9th Asian Winter School on strings, particles and cosmology , January 18-27, Busan, Korea (2015).
  86. [86]
    J.D. Qualls, Lectures on conformal field theory, arXiv:1511.04074 [INSPIRE].
  87. [87]
    S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, Springer Briefs in Physics, Springer, Germany (2016), arXiv:1601.05000.
  88. [88]
    D. Simmons-Duffin, The conformal bootstrap, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1-26, Boulder, U.S.A. (2015), arXiv:1602.07982 [INSPIRE].
  89. [89]
    A. Antunes, Numerical methods in the conformal bootstrap, arXiv:1709.01529.
  90. [90]
    M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
  91. [91]
    B. Eick, H.U. Besche and E. O’Brien, SmallGrpThe GAP small groups library, https://gap-packages.github.io/smallgrp/.
  92. [92]
    The GAP group, GAPGroups, Algorithms, and Programming, Version 4.10.0, https://www.gap-system.org.
  93. [93]
    The Sage developers, Sagemath, the Sage Mathematics Software System, http://www.sagemath.org.
  94. [94]
    J.D. Dixon, Constructing representations of finite groups, in Groups and computation, L. Finkelstein and W.M. Kantor eds., DIMACS Ser. Discrete Math. Theoret. Comput. Sci. volume 11, American Mathematical Society, Providence, U.S.A. (1993).Google Scholar
  95. [95]
    V. Dabbaghian-Abdoly, RepsnConstructing representations of finite groups, https://gap-packages.github.io/repsn/.
  96. [96]
    V. Dabbaghian-Abdoly, An algorithm for constructing representations of finite groups, J. Symbolic Comput. 39 (2005) 671.MathSciNetCrossRefGoogle Scholar
  97. [97]
    M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari, The critical exponents of the superfluid transition in He-4, Phys. Rev. B 74 (2006) 144506 [cond-mat/0605083] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan

Personalised recommendations