Generalized fishnets and exact four-point correlators in chiral CFT4

  • Vladimir Kazakov
  • Enrico Olivucci
  • Michelangelo PretiEmail author
Open Access
Regular Article - Theoretical Physics


We study the Feynman graph structure and compute certain exact four-point correlation functions in chiral CFT4 proposed by Ö. Gürdŏgan and one of the authors as a double scaling limit of γ-deformed \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM theory. We give full description of bulk behavior of large Feynman graphs: it shows a generalized “dynamical fishnet” structure, with a dynamical exchange of bosonic and Yukawa couplings. We compute certain four-point correlators in the full chiral CFT4, generalizing recent results for a particular one-coupling version of this theory — the bi-scalar “fishnet” CFT. We sum up exactly thecorresponding Feynman diagrams, including both bosonic and fermionic loops, by Bethe-Salpeter method. This provides explicit OPE data for various twist-2 operators with spin, showing a rich analytic structure, both in coordinate and coupling spaces.


Conformal Field Theory Integrable Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSzbMATHGoogle Scholar
  3. [3]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) Super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
  5. [5]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Gromov, Introduction to the Spectrum of \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM and the Quantum Spectral Curve, arXiv:1708.03648 [INSPIRE].
  7. [7]
    V. Kazakov, Quantum Spectral Curve of γ-twisted \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM theory and fishnet CFT, arXiv:1802.02160 [INSPIRE].
  8. [8]
    N. Beisert and R. Roiban, Beauty and the twist: The Bethe ansatz for twisted \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM, JHEP 08 (2005) 039 [hep-th/0505187] [INSPIRE].
  9. [9]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    V. Kazakov, S. Leurent and D. Volin, T-system on T-hook: Grassmannian Solution and Twisted Quantum Spectral Curve, JHEP 12 (2016) 044 [arXiv:1510.02100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Sieg and M. Wilhelm, On a CFT limit of planar γ i -deformed \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM theory, Phys. Lett. B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].
  12. [12]
    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-Deformed \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory, Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].
  13. [13]
    B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM Theory,arXiv:1505.06745[INSPIRE].
  14. [14]
    T. Fleury and S. Komatsu, Hexagonalization of Correlation Functions, JHEP 01 (2017) 130 [arXiv:1611.05577] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM, JHEP 10 (2017) 098 [arXiv:1611.05436] [INSPIRE].
  16. [16]
    F. Coronado, Bootstrapping the simplest correlator in planar \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM at all loops, arXiv:1811.03282 [INSPIRE].
  17. [17]
    T. Bargheer, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, Handling Handles: Nonplanar Integrability in \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 121 (2018) 231602 [arXiv:1711.05326] [INSPIRE].
  18. [18]
    Ö. Gürdoğan and V. Kazakov, New Integrable 4D Quantum Field Theories from Strongly Deformed Planar \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 117 (2016) 201602 [arXiv:1512.06704] [INSPIRE].
  19. [19]
    J. Caetano, Ö. Gürdoğan and V. Kazakov, Chiral limit of \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].
  20. [20]
    A.B. Zamolodchikov, ‘Fishnetdiagrams as a completely integrable system, Phys. Lett. 97B (1980) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V. Kazakov and E. Olivucci, Biscalar Integrable Conformal Field Theories in Any Dimension, Phys. Rev. Lett. 121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, TBA, NLO Lüscher correction and double wrapping in twisted AdS/CFT, JHEP 12 (2011) 059 [arXiv:1108.4914] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, to appear.Google Scholar
  24. [24]
    N. Gromov, V. Kazakov and G. Korchemsky, Exact Correlation Functions in Conformal Fishnet Theory, arXiv:1808.02688 [INSPIRE].
  25. [25]
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-l. Zhong, Yangian Symmetry for Bi-Scalar Loop Amplitudes, JHEP 05 (2018) 003 [arXiv:1704.01967] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-l. Zhong, Yangian Symmetry for Fishnet Feynman Graphs, Phys. Rev. D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    G.P. Korchemsky, Exact scattering amplitudes in conformal fishnet theory, arXiv:1812.06997 [INSPIRE].
  28. [28]
    R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudesWilson loops duality for the first non-planar correction, JHEP 08 (2018) 122 [arXiv:1802.09395] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    O. Mamroud and G. Torrents, RG stability of integrable fishnet models, JHEP 06 (2017) 012 [arXiv:1703.04152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A.C. Ipsen, M. Staudacher and L. Zippelius, The one-loop spectral problem of strongly twisted \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) Super Yang-Mills theory, JHEP 04 (2019) 044 [arXiv:1812.08794] [INSPIRE].
  31. [31]
    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J. Caetano, unpublished.Google Scholar
  33. [33]
    N. Gromov, V. Kazakov, G. Korchemsky, S. Negro and G. Sizov, Integrability of Conformal Fishnet Theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) superYang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].
  35. [35]
    N. Beisert and M. Staudacher, The \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].
  36. [36]
    J. Fokken, C. Sieg and M. Wilhelm, Non-conformality of γi -deformed \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM theory, J. Phys. A 47 (2014) 455401 [arXiv:1308.4420] [INSPIRE].
  37. [37]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory,Nucl. Phys. B 447(1995) 95 [hep-th/9503121] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A.A. Tseytlin and K. Zarembo, Effective potential in nonsupersymmetric SU(N ) × SU(N ) gauge theory and interactions of type 0 D3-branes, Phys. Lett. B 457 (1999) 77 [hep-th/9902095] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative search for fixed lines in large N gauge theories, JHEP 08 (2005) 011 [hep-th/0505099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    J. Fokken, C. Sieg and M. Wilhelm, A piece of cake: the ground-state energies in γi -deformed \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right) = 4 \) SYM theory at leading wrapping order,JHEP 09(2014) 078 [arXiv:1405.6712] [INSPIRE].
  42. [42]
    E. Pomoni and L. Rastelli, Large N Field Theory and AdS Tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S.E. Derkachov and A.N. Manashov, General solution of the Yang-Baxter equation with symmetry group SL(n, C), St. Petersburg Math. J. 21 (2010) 513 [Alg. Anal. 21N4 (2009) 1] [INSPIRE].
  44. [44]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    E.S. Fradkin and M.Y. Palchik, Recent Developments in Conformal Invariant Quantum Field Theory, Phys. Rept. 44 (1978) 249 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
  48. [48]
    M. Preti, STR: a Mathematica package for the method of uniqueness, arXiv:1811.04935 [INSPIRE].
  49. [49]
    M. Preti, The Game of Triangles, in 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research: Empowering the revolution: Bringing Machine Learning to High Performance Computing (ACAT 2019), Saas-Fee, Switzerland, March 11-15, 2019 (2019) [arXiv:1905.07380] [INSPIRE].
  50. [50]
    D. Chicherin, S. Derkachov and A.P. Isaev, Conformal group: R-matrix and star-triangle relation, JHEP 04 (2013) 020 [arXiv:1206.4150] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.G. Grozin, Massless two-loop self-energy diagram: Historical review, Int. J. Mod. Phys. A 27 (2012) 1230018 [arXiv:1206.2572] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  54. [54]
    B. Basso, J. Caetano and T. Fleury, Hexagons and Correlators in the Fishnet Theory, arXiv:1812.09794 [INSPIRE].
  55. [55]
    B. Basso and L.J. Dixon, Gluing Ladder Feynman Diagrams into Fishnets, Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Derkachov, V. Kazakov and E. Olivucci, Basso-Dixon Correlators in Two-Dimensional Fishnet CFT, JHEP 04 (2019) 032 [arXiv:1811.10623] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    B. Basso and D.-l. Zhong, Continuum limit of fishnet graphs and AdS σ-model, JHEP 01 (2019) 002 [arXiv:1806.04105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. D’Eramo, G. Parisi and L. Peliti, Theoretical predictions for critical exponents at the lambda point of bose liquids, Lett. Nuovo Cim. 2 (1971) 878 [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    A.N. Vasiliev, Y.M. Pismak and Y.R. Khonkonen, Simple Method of Calculating the Critical Indices in the 1/N Expansion, Theor. Math. Phys. 46 (1981) 104 [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M. Hogervorst, M. Paulos and A. Vichi, The ABC (in any D) of Logarithmic CFT, JHEP 10 (2017) 201 [arXiv:1605.03959] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de l’ École Normale SupérieureParis Cedex 05France
  2. 2.Université Paris-VI, PSL Research UniversitySorbonne UniversitésParisFrance
  3. 3.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations