Sequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model

  • A. E. Cárcamo HernándezEmail author
  • Sergey Kovalenko
  • Roman Pasechnik
  • Ivan Schmidt
Open Access
Regular Article - Theoretical Physics


Extended scalar and fermion sectors offer new opportunities for generating the observed strong hierarchies in the fermion mass and mixing patterns of the Standard Model (SM). In this work, we elaborate on the prospects of a particular extension of the Inert Higgs doublet model where the SM hierarchies are generated sequentially by radiative virtual corrections in a fully renormalisable way, i.e. without adding any non-renormalisable Yukawa terms or soft-breaking operators to the scalar potential. Our model has a potential to explain the recently observed RK and RK anomalies, thanks to the non universal U1X assignments of the fermionic fields that yield non universal Z′ couplings to fermions. We explicitly demonstrate the power of this model for generating the realistic quark, lepton and neutrino mass spectra. In particular, we show that due to the presence of both continuous and discrete family symmetries in the considered framework, the top quark acquires a tree-level mass, lighter quarks and leptons get their masses at one- and two-loop order, while neutrino masses are generated at three-loop level. The minimal field content, particle spectra and scalar potential of this model are discussed in detail.


Beyond Standard Model Discrete Symmetries Neutrino Physics Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B.S. Balakrishna, A.L. Kagan and R.N. Mohapatra, Quark Mixings and Mass Hierarchy From Radiative Corrections, Phys. Lett. B 205 (1988) 345 [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    E. Ma, Radiative Quark and Lepton Masses Through Soft Supersymmetry Breaking, Phys. Rev. D 39 (1989) 1922 [INSPIRE].Google Scholar
  3. [3]
    E. Ma, D. Ng, J.T. Pantaleone and G.-G. Wong, One Loop Induced Fermion Masses and Exotic Interactions in a Standard Model Context, Phys. Rev. D 40 (1989) 1586 [INSPIRE].Google Scholar
  4. [4]
    T. Kitabayashi and M. Yasue, Radiatively induced neutrino masses and oscillations in an SU(3)L × U(1)N gauge model, Phys. Rev. D 63 (2001) 095002 [hep-ph/0010087] [INSPIRE].
  5. [5]
    D. Chang and H.N. Long, Interesting radiative patterns of neutrino mass in an SU(3)C × SU(3)L × U(1)X model with right-handed neutrinos, Phys. Rev. D 73 (2006) 053006 [hep-ph/0603098] [INSPIRE].
  6. [6]
    A.E. Carcamo Hernandez, R. Martinez and F. Ochoa, Radiative seesaw-type mechanism of quark masses in SU(3)C ⊗ SU(3)L ⊗ U(1)X, Phys. Rev. D 87 (2013) 075009 [arXiv:1302.1757] [INSPIRE].Google Scholar
  7. [7]
    A.E. Carcamo Hernandez, I. de Medeiros Varzielas, S.G. Kovalenko, H. Päs and I. Schmidt, Lepton masses and mixings in an A 4 multi-Higgs model with a radiative seesaw mechanism, Phys. Rev. D 88 (2013) 076014 [arXiv:1307.6499] [INSPIRE].Google Scholar
  8. [8]
    M.D. Campos, A.E. Cárcamo Hernández, S. Kovalenko, I. Schmidt and E. Schumacher, Fermion masses and mixings in an SU(5) grand unified model with an extra flavor symmetry, Phys. Rev. D 90 (2014) 016006 [arXiv:1403.2525] [INSPIRE].Google Scholar
  9. [9]
    S.M. Boucenna, S. Morisi and J.W.F. Valle, Radiative neutrino mass in 3-3-1 scheme, Phys. Rev. D 90 (2014) 013005 [arXiv:1405.2332] [INSPIRE].Google Scholar
  10. [10]
    H. Okada, N. Okada and Y. Orikasa, Radiative seesaw mechanism in a minimal 3-3-1 model, Phys. Rev. D 93 (2016) 073006 [arXiv:1504.01204] [INSPIRE].zbMATHGoogle Scholar
  11. [11]
    W. Wang and Z.-L. Han, Radiative linear seesaw model, dark matter and U(1)B−L, Phys. Rev. D 92 (2015) 095001 [arXiv:1508.00706] [INSPIRE].Google Scholar
  12. [12]
    C. Arbeláez, A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiative Seesaw-type Mechanism of Fermion Masses and Non-trivial Quark Mixing, Eur. Phys. J. C 77 (2017) 422 [arXiv:1602.03607] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    T. Nomura and H. Okada, Radiatively induced Quark and Lepton Mass Model, Phys. Lett. B 761 (2016) 190 [arXiv:1606.09055] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    C. Kownacki and E. Ma, Gauge U(1) dark symmetry and radiative light fermion masses, Phys. Lett. B 760 (2016) 59 [arXiv:1604.01148] [INSPIRE].CrossRefzbMATHGoogle Scholar
  15. [15]
    T. Nomura, H. Okada and N. Okada, A Colored KNT Neutrino Model, Phys. Lett. B 762 (2016) 409 [arXiv:1608.02694] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    A.E. Cárcamo Hernández, A novel and economical explanation for SM fermion masses and mixings, Eur. Phys. J. C 76 (2016) 503 [arXiv:1512.09092] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    J.E. Camargo-Molina, A.P. Morais, A. Ordell, R. Pasechnik, M.O.P. Sampaio and J. Wessén, Reviving trinification models through an E6 -extended supersymmetric GUT, Phys. Rev. D 95 (2017) 075031 [arXiv:1610.03642] [INSPIRE].Google Scholar
  18. [18]
    J.E. Camargo-Molina, A.P. Morais, R. Pasechnik and J. Wessén, On a radiative origin of the Standard Model from Trinification, JHEP 09 (2016) 129 [arXiv:1606.03492] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A.E. Cárcamo Hernández and H.N. Long, A highly predictive A 4 flavour 3-3-1 model with radiative inverse seesaw mechanism, J. Phys. G 45 (2018) 045001 [arXiv:1705.05246] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    G. Abbas, Solving the fermionic mass hierarchy of the standard model, arXiv:1712.08052 [INSPIRE].
  21. [21]
    A. Dev and R.N. Mohapatra, Natural Alignment of Quark Flavors and Radiatively Induced Quark Mixings, Phys. Rev. D 98 (2018) 073002 [arXiv:1804.01598] [INSPIRE].Google Scholar
  22. [22]
    A.E. Cárcamo Hernández, S. Kovalenko, J.W.F. Valle and C.A. Vaquera-Araujo, Neutrino predictions from a left-right symmetric flavored extension of the standard model, JHEP 02 (2019) 065 [arXiv:1811.03018] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Abbas, A new solution of the fermionic mass hierarchy of the standard model, arXiv:1807.05683 [INSPIRE].
  24. [24]
    A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiatively generated hierarchy of lepton and quark masses, JHEP 02 (2017) 125 [arXiv:1611.09797] [INSPIRE].CrossRefzbMATHGoogle Scholar
  25. [25]
    A.E. Cárcamo Hernández, S. Kovalenko, H.N. Long and I. Schmidt, A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern, JHEP 07 (2018) 144 [arXiv:1705.09169] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].Google Scholar
  27. [27]
    K. Bora, Updated values of running quark and lepton masses at GUT scale in SM, 2HDM and MSSM, Horizon 2 (2013) 112 [arXiv:1206.5909] [INSPIRE].Google Scholar
  28. [28]
    Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].Google Scholar
  29. [29]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  30. [30]
    LHCb collaboration, Test of lepton universality using B +K ++ decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  31. [31]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K ∗0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  32. [32]
    LHCb collaboration, Angular analysis of the B 0K ∗0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  33. [33]
    A.E. Cárcamo Hernández, S. Kovalenko, R. Pasechnik and I. Schmidt, Phenomenology of an extended IDM with loop-generated fermion mass hierarchies, arXiv:1901.09552 [INSPIRE].
  34. [34]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].Google Scholar
  35. [35]
    E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].Google Scholar
  36. [36]
    S. Descotes-Genon, M. Moscati and G. Ricciardi, Nonminimal 331 model for lepton flavor universality violation in bsℓℓ decays, Phys. Rev. D 98 (2018) 115030 [arXiv:1711.03101] [INSPIRE].Google Scholar
  37. [37]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • A. E. Cárcamo Hernández
    • 1
    Email author
  • Sergey Kovalenko
    • 1
  • Roman Pasechnik
    • 2
    • 3
    • 4
  • Ivan Schmidt
    • 1
  1. 1.Universidad Técnica Federico Santa Marıa and Centro Cientıfico-Tecnológico de ValparaısoValparaísoChile
  2. 2.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden
  3. 3.Nuclear Physics Institute ASCRŘežCzech Republic
  4. 4.Departamento de Física, CFMUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations