Resummation of soft and Coulomb corrections for \( t\overline{t}h \) production at the LHC

  • Wan-li JuEmail author
  • Li Lin Yang
Open Access
Regular Article - Theoretical Physics


In this paper, a combined resummation of soft and Coulomb corrections is performed for the associated production of the Higgs boson with a top quark pair at the LHC. We illustrate the similarities and critical differences between this process and the \( t\overline{t} \) production process. We show that up to the next-to-leading power, the total cross section for \( t\overline{t}h \) production admits a similar factorization formula in the threshold limit as that for tt production. This fact, however, is not expected to hold at higher powers. Based on the factorization formula, we perform the resummation at the improved next-to-leading logarithmic accuracy, and match to the next-to-leading order result. This allows us to give NLL′+NLO predictions for the total cross sections at the LHC. We find that the resummation effects enhance the NLO cross sections by about 6%, and significantly reduce the scale dependence of the theoretical predictions.


QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D=6 extension of the SM, JHEP 04(2015) 167[arXiv:1410.3471] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].Google Scholar
  5. [5]
    Q.-H. Cao, B. Yan, D.-M. Zhang and H. Zhang, Resolving the degeneracy in single Higgs production with Higgs pair production, Phys. Lett. B 752 (2016) 285 [arXiv:1508.06512] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    C. Shen and S.-H. Zhu, Anomalous Higgs-top coupling pollution of the triple Higgs coupling extraction at a future high-luminosity electron-positron collider, Phys. Rev. D 92 (2015) 094001 [arXiv:1504.05626] [INSPIRE].Google Scholar
  7. [7]
    ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
  8. [8]
    CMS collaboration, Observation of \( t\overline{t}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
  9. [9]
    G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont and L. Rossi, High-Luminosity Large Hadron Collider (HL-LHC): preliminary design report, CERN-2015-005, CERN, Geneva, Switzerland (2015).
  10. [10]
    J.N. Ng and P. Zakarauskas, A QCD parton calculation of conjoined production of Higgs bosons and heavy flavors in pp collision, Phys. Rev. D 29 (1984) 876 [INSPIRE].Google Scholar
  11. [11]
    Z. Kunszt, Associated production of heavy Higgs boson with top quarks, Nucl. Phys. B 247 (1984) 339 [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    D.A. Dicus and S. Willenbrock, Higgs boson production from heavy quark fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].Google Scholar
  13. [13]
    W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].
  14. [14]
    L. Reina, S. Dawson and D. Wackeroth, QCD corrections to associated \( t\overline{t}h \) production at the Tevatron, Phys. Rev. D 65 (2002) 053017 [hep-ph/0109066] [INSPIRE].
  15. [15]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].
  16. [16]
    W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO QCD corrections to \( t\overline{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].
  17. [17]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].
  18. [18]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].
  19. [19]
    Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO and EW NLO corrections to \( t\overline{t}H \) production with top quark decays at hadron collider, Phys. Lett. B 738 (2014) 1 [arXiv:1407.1110] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Soft gluon resummation for associated \( t\overline{t}H \) production at the LHC, JHEP 03 (2016) 065 [arXiv:1509.02780] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    A. Broggio, A. Ferroglia, B.D. Pecjak, A. Signer and L.L. Yang, Associated production of a top pair and a Higgs boson beyond NLO, JHEP 03 (2016) 124 [arXiv:1510.01914] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    A. Broggio, A. Ferroglia, B.D. Pecjak and L.L. Yang, NNLL resummation for the associated production of a top pair and a Higgs boson at the LHC, JHEP 02 (2017) 126 [arXiv:1611.00049] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Associated \( t\overline{t}H \) production at the LHC: theoretical predictions at NLO+NNLL accuracy, Phys. Rev. D 97 (2018) 114007 [arXiv:1704.03363] [INSPIRE].Google Scholar
  26. [26]
    M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the \( gg\left(q\overline{q}\right)\ \to Q\overline{Q}+X \) cross section at O(α s4), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    M. Beneke, P. Falgari and C. Schwinn, Threshold resummation for pair production of coloured heavy (s)particles at hadron colliders, Nucl. Phys. B 842 (2011) 414 [arXiv:1007.5414] [INSPIRE].CrossRefzbMATHGoogle Scholar
  28. [28]
    M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].CrossRefzbMATHGoogle Scholar
  29. [29]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  30. [30]
    M. Czakon and A. Mitov, On the soft-gluon resummation in top quark pair production at hadron colliders, Phys. Lett. B 680 (2009) 154 [arXiv:0812.0353] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  32. [32]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  33. [33]
    V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  34. [34]
    R. Mertig, M. Böhm and A. Denner, FeynCalc: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].
  36. [36]
    T. Hahn, Concurrent CUBA, J. Phys. Conf. Ser. 608 (2015) 012066 [arXiv:1408.6373] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [INSPIRE].Google Scholar
  39. [39]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].
  41. [41]
    J. Piclum and C. Schwinn, Soft-gluon and Coulomb corrections to hadronic top-quark pair production beyond NNLO, JHEP 03 (2018) 164 [arXiv:1801.05788] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    A. Denner, S. Dittmaier, M. Roth and M.M. Weber, Radiative corrections to Higgs boson production in association with top quark pairs at e + e colliders, Nucl. Phys. B 680 (2004) 85 [hep-ph/0309274] [INSPIRE].
  43. [43]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  44. [44]
    B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].CrossRefzbMATHGoogle Scholar
  45. [45]
    M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].CrossRefzbMATHGoogle Scholar
  46. [46]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX sγ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  47. [47]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  48. [48]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  49. [49]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  50. [50]
    M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with non-Abelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].
  51. [51]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
  52. [52]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
  53. [53]
    M. Beneke, Perturbative heavy quark-anti-quark systems, hep-ph/9911490 [INSPIRE].
  54. [54]
    M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [INSPIRE].
  55. [55]
    B.A. Kniehl, A.A. Penin, V.A. Smirnov and M. Steinhauser, Potential NRQCD and heavy quarkonium spectrum at next-to-next-to-next-to-leading order, Nucl. Phys. B 635 (2002) 357 [hep-ph/0203166] [INSPIRE].
  56. [56]
    W. Fischler, Quark-anti-quark potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    A. Billoire, How heavy must be quarks in order to build Coulombic q q bound states, Phys. Lett. B 92 (1980) 343 [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].CrossRefzbMATHGoogle Scholar
  59. [59]
    H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    H.H. Patel, Package-X 2.0: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].
  61. [61]
    V. Shtabovenko, FeynHelpers: connecting FeynCalc to FIRE and Package-X, Comput. Phys. Commun. 218 (2017) 48 [arXiv:1611.06793] [INSPIRE].CrossRefzbMATHGoogle Scholar
  62. [62]
    A. Pineda and A. Signer, Heavy quark pair production near threshold with potential non-relativistic QCD, Nucl. Phys. B 762 (2007) 67 [hep-ph/0607239] [INSPIRE].
  63. [63]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
  65. [65]
    T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations