Advertisement

Lepton flavor violation and neutrino masses from A5 and CP in the non-universal MSSM

  • M. L. López-IbáñezEmail author
  • Aurora Melis
  • Davide Meloni
  • Oscar Vives
Open Access
Regular Article - Theoretical Physics
  • 136 Downloads

Abstract

We analyze the phenomenological consequences of embedding a flavor symmetry based on the groups A5 and CP in a supersymmetric framework. We concentrate on the leptonic sector, where two different residual symmetries are assumed to be conserved at leading order for charged and neutral leptons. All possible realizations to generate neutrino masses at tree level are investigated. Sizable flavor violating effects in the charged lepton sector are unavoidable due to the non-universality of soft-breaking terms determined by the symmetry. We derive testable predictions for the neutrino spectrum, lepton mixing and flavor changing processes with non-trivial relations among observables.

Keywords

Beyond Standard Model Neutrino Physics Quark Masses and SM Parameters Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [INSPIRE].
  2. [2]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [INSPIRE].Google Scholar
  3. [3]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  5. [5]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
  6. [6]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.02984 [INSPIRE].
  7. [7]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05471 [INSPIRE].
  8. [8]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05823 [INSPIRE].
  9. [9]
    Hyper-Kamiokande Proto-Collaboration collaboration, Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
  10. [10]
    Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].
  11. [11]
    Noνa collaboration, First oscillation results with neutrino and antineutrino beams in Noνa, (2018).Google Scholar
  12. [12]
    S. Weinberg, Baryon- and lepton-nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566.CrossRefGoogle Scholar
  13. [13]
    K. Tsumura and L. Velasco-Sevilla, Phenomenology of flavon fields at the LHC, Phys. Rev. D 81 (2010) 036012 [arXiv:0911.2149] [INSPIRE].
  14. [14]
    A.J. Buras, M.V. Carlucci, L. Merlo and E. Stamou, Phenomenology of a gauged SU(3)3 flavour model, JHEP 03 (2012) 088 [arXiv:1112.4477] [INSPIRE].
  15. [15]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal constraints on low-energy flavour models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    Y. Koide, Can mass of the lightest family gauge boson be of the order of TeV?, Phys. Rev. D 87 (2013) 016016 [arXiv:1209.1694] [INSPIRE].
  17. [17]
    S.-S. Bao, Z. Liu and Y.-L. Wu, SU(3)F gauge family model and new symmetry breaking scale from FCNC processes, Nucl. Phys. B 904 (2016) 1 [arXiv:1505.03583] [INSPIRE].
  18. [18]
    S. Pascoli and Y.-L. Zhou, Flavon-induced connections between lepton flavour mixing and charged lepton flavour violation processes, JHEP 10 (2016) 145 [arXiv:1607.05599] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    L. Heinrich, H. Schulz, J. Turner and Y.-L. Zhou, Constraining A 4 leptonic flavour model parameters at colliders and beyond, JHEP 04 (2019) 144 [arXiv:1810.05648] [INSPIRE].
  20. [20]
    D. Das, M.L. López-Ibáñez, M.J. Pérez and O. Vives, Effective theories of flavor and the nonuniversal MSSM, Phys. Rev. D 95 (2017) 035001 [arXiv:1607.06827] [INSPIRE].
  21. [21]
    M.L. López-Ibáñez, A. Melis, M.J. Pérez and O. Vives, Slepton non-universality in the flavor-effective MSSM, JHEP 11 (2017) 162 [Erratum ibid. 04 (2018) 015] [arXiv:1710.02593] [INSPIRE].
  22. [22]
    I. De Medeiros Varzielas, M.L. López-Ibáñez, A. Melis and O. Vives, Controlled flavor violation in the MSSM from a unified Δ(27) flavor symmetry, JHEP 09 (2018) 047 [arXiv:1807.00860] [INSPIRE].
  23. [23]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The messenger sector of SUSY flavour models and radiative breaking of flavour universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    S. Antusch, L. Calibbi, V. Maurer and M. Spinrath, From flavour to SUSY flavour models, Nucl. Phys. B 852 (2011) 108 [arXiv:1104.3040] [INSPIRE].
  25. [25]
    C.-C. Li and G.-J. Ding, Lepton mixing in A 5 family symmetry and generalized CP, JHEP 05 (2015) 100 [arXiv:1503.03711] [INSPIRE].
  26. [26]
    A. Di Iura, C. Hagedorn and D. Meloni, Lepton mixing from the interplay of the alternating group A 5 and CP, JHEP 08 (2015) 037 [arXiv:1503.04140] [INSPIRE].
  27. [27]
    P. Ballett, S. Pascoli and J. Turner, Mixing angle and phase correlations from A5 with generalized CP and their prospects for discovery, Phys. Rev. D 92 (2015) 093008 [arXiv:1503.07543] [INSPIRE].
  28. [28]
    J. Turner, Predictions for leptonic mixing angle correlations and nontrivial Dirac CP-violation from A 5 with generalized CP symmetry, Phys. Rev. D 92 (2015) 116007 [arXiv:1507.06224] [INSPIRE].
  29. [29]
    A. Di Iura, M.L. López-Ibáñez and D. Meloni, Neutrino masses and lepton mixing from A 5 × CP, arXiv:1811.09662 [INSPIRE].
  30. [30]
  31. [31]
  32. [32]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
  33. [33]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and discrete flavour symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M.-C. Chen et al., CP violation from finite groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].
  36. [36]
    W. Grimus and M.N. Rebelo, Automorphisms in gauge theories and the definition of CP and P, Phys. Rept. 281 (1997) 239 [hep-ph/9506272] [INSPIRE].
  37. [37]
    G. Ecker, W. Grimus and H. Neufeld, Spontaneous CP violation in left-right symmetric gauge theories, Nucl. Phys. B 247 (1984) 70 [INSPIRE].
  38. [38]
    G. Ecker, W. Grimus and H. Neufeld, A standard form for generalized CP transformations, J. Phys. A 20 (1987) L807 [INSPIRE].
  39. [39]
    H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].
  40. [40]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP nonconservation, Phys. Rev. Lett. 55 (1985) 1039.Google Scholar
  41. [41]
    S.F. King and I.N.R. Peddie, Canonical normalization and Yukawa matrices, Phys. Lett. B 586 (2004) 83 [hep-ph/0312237] [INSPIRE].
  42. [42]
    S.F. King et al., Kähler corrections and softly broken family symmetries, JHEP 07 (2005) 049 [hep-ph/0407012] [INSPIRE].
  43. [43]
    J.R. Espinosa and A. Ibarra, Flavor symmetries and Kähler operators, JHEP 08 (2004) 010 [hep-ph/0405095] [INSPIRE].
  44. [44]
    M.-C. Chen et al., Predictivity of models with spontaneously broken non-Abelian discrete flavor symmetries, Nucl. Phys. B 873 (2013) 343 [arXiv:1302.5576] [INSPIRE].
  45. [45]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [INSPIRE].
  46. [46]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  47. [47]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].CrossRefzbMATHGoogle Scholar
  48. [48]
    S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].Google Scholar
  49. [49]
    P.F. De Salas et al., Neutrino mass ordering from oscillations and beyond: 2018 status and future prospects, Front. Astron. Space Sci. 5 (2018) 36 [arXiv:1806.11051] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    MEG collaboration, Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  51. [51]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  52. [52]
    D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].
  53. [53]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].
  54. [54]
    F. Feruglio and A. Paris, The golden ratio prediction for the solar angle from a natural model with A 5 flavour symmetry, JHEP 03 (2011) 101 [arXiv:1101.0393] [INSPIRE].
  55. [55]
    I. Esteban et al., Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23 , δ CP and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].
  56. [56]
    CUORE collaboration, First results from CUORE: a search for lepton number violation via 0νββ decay of 130 Te, Phys. Rev. Lett. 120 (2018) 132501 [arXiv:1710.07988] [INSPIRE].
  57. [57]
    nEXO collaboration, Sensitivity and discovery potential of nEXO to neutrinoless double beta decay, Phys. Rev. C 97 (2018) 065503 [arXiv:1710.05075] [INSPIRE].
  58. [58]
    KATRIN collaboration, KATRIN design report 2004, FZKA-7090 (2005).Google Scholar
  59. [59]
    A. Sejersen Riis, S. Hannestad and C. Weinheimer, Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference, Phys. Rev. C 84 (2011) 045503 [arXiv:1105.6005] [INSPIRE].
  60. [60]
    CORE collaboration, Exploring cosmic origins with CORE: Cosmological parameters, JCAP 04 (2018) 017 [arXiv:1612.00021] [INSPIRE].
  61. [61]
    MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].
  62. [62]
    SINDRUM collaboration, Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].
  63. [63]
    A. Blondel et al., Research proposal for an experiment to search for the decay μeee, arXiv:1301.6113 [INSPIRE].
  64. [64]
    Mu2e collaboration, Mu2e technical design report, arXiv:1501.05241 [INSPIRE].
  65. [65]
    BaBar collaboration, Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  66. [66]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  67. [67]
    Belle collaboration, Search for lepton-flavor-violating τ decays into a lepton and a vector meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità di Roma Tre and INFN, Sezione Roma TreRomaItaly
  2. 2.Departament de Física TèoricaUniversitat de València and IFIC, Universitat de València-CSICBurjassotSpain

Personalised recommendations