Advertisement

AdS3 four-point functions from \( \frac{1}{8} \)-BPS states

  • Alessandro Bombini
  • Andrea GallianiEmail author
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We compute four-point functions in the Heavy-Heavy-Light-Light limit involving a large family of \( \frac{1}{8} \) -BPS heavy states whose dual supergravity solutions are explicitly known, avoiding the use of Witten diagrams. This is achieved by using the AdS/CFT dictionary of type IIB supergravity on AdS3 × S3 × ℳ4 that maps supersymmetric heavy operators whose conformal dimension is the order of the central charge to explicit asymp-totically AdS supergravity solutions. Using the Ward Identities for the generators of the \( \mathcal{N}=\left(4,4\right) \) superconformalSU(2)Kac-Moodyalgebra,wecanrelateallofthesefour-point functions to each other and to other known four-point functions involving \( \frac{1}{4} \)-BPS heavy states, furnishing non-trivial checks of the computations. Finally, the Ward Identities can be employed to reconstruct the all-light four-point functions, providing the first holographic correlators of single-trace operators computed in AdS3 involving \( \frac{1}{8} \)-BPS operators.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Liu and A.A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys. Rev. D 59 (1999) 086002 [hep-th/9807097] [INSPIRE].
  3. [3]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett. B 452 (1999) 61 [hep-th/9808006] [INSPIRE].
  4. [4]
    E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS d+1, Nucl. Phys. B 550 (1999) 261 [hep-th/9811257] [INSPIRE].
  5. [5]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].
  6. [6]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].
  7. [7]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: On the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    S.G. Avery, Using the D1D5 CFT to Understand Black Holes, arXiv:1012.0072 [INSPIRE].
  9. [9]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2, JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].
  11. [11]
    J.L.F. Barbon and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP 11 (2003) 047 [hep-th/0308063] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Kleban, M. Porrati and R. Rabadán, Poincaré recurrences and topological diversity, JHEP 10 (2004) 030 [hep-th/0407192] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    J.L.F. Barbon and E. Rabinovici, Long time scales and eternal black holes, Fortsch. Phys. 52 (2004) 642 [hep-th/0403268] [INSPIRE].CrossRefzbMATHGoogle Scholar
  14. [14]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
  15. [15]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].
  16. [16]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].
  17. [17]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Giusto and R. Russo, Superdescendants of the D1D5 CFT and their dual 3-charge geometries, JHEP 03 (2014) 007 [arXiv:1311.5536] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys. B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE].
  21. [21]
    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Giusto, E. Moscato and R. Russo, AdS 3 holography for 1/4 and 1/8 BPS geometries, JHEP 11 (2015) 004 [arXiv:1507.00945] [INSPIRE].
  23. [23]
    I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP 02 (2018) 014 [arXiv:1711.10474] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    E. Bakhshaei and A. Bombini, Three-charge superstrata with internal excitations, Class. Quant. Grav. 36 (2019) 055001 [arXiv:1811.00067] [INSPIRE].
  26. [26]
    A. Galliani, S. Giusto, E. Moscato and R. Russo, Correlators at large c without information loss, JHEP 09 (2016) 065 [arXiv:1606.01119] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Galliani, S. Giusto and R. Russo, Holographic 4-point correlators with heavy states, JHEP 10 (2017) 040 [arXiv:1705.09250] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Bombini, A. Galliani, S. Giusto, E. Moscato and R. Russo, Unitary 4-point correlators from classical geometries, Eur. Phys. J. C 78 (2018) 8 [arXiv:1710.06820] [INSPIRE].
  29. [29]
    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    N. Ceplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP 03 (2019) 095 [arXiv:1812.08761] [INSPIRE].
  32. [32]
    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP 05 (2012) 014 [arXiv:1112.6413] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP 02 (2013) 050 [arXiv:1211.0306] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys. B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].
  35. [35]
    I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP 11 (2017) 021 [arXiv:1709.01107] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ Geometries, JHEP 04 (2019) 126 [arXiv:1812.05110] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    P. Heidmann and N.P. Warner, Superstratum Symbiosis, arXiv:1903.07631 [INSPIRE].
  38. [38]
    S. Giusto, R. Russo and C. Wen, Holographic correlators in AdS 3, JHEP 03 (2019) 096 [arXiv:1812.06479] [INSPIRE].
  39. [39]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
  41. [41]
    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    G. Arutyunov, A. Pankiewicz and S. Theisen, Cubic couplings in D = 6 N = 4b supergravity on AdS 3 × S 3, Phys. Rev. D 63 (2001) 044024 [hep-th/0007061] [INSPIRE].
  43. [43]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  44. [44]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
  45. [45]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].
  46. [46]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica ed Astronomia “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.I.N.F.N. Sezione di PadovaPadovaItaly
  3. 3.Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Orme des MerisiersGif sur YvetteFrance

Personalised recommendations