Advertisement

Exact greybody factors for the brane scalar field of five-dimensional rotating black holes

  • Young-Hwan Hyun
  • Yoonbai Kim
  • Seong Chan ParkEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study scalar perturbations of the five-dimensional rotating black holes and find an exact solution giving exact description of the Hawking radiation. Mathematically, the full solution for this spin-zero field is expressed in terms of the prolate spheroidal wave function with complex parameters. By using the spheroidal joining factor, we write the corresponding boundary condition and greybody factors. We also check that the exact result reproduces the low frequency limit of the greybody factor and shows good agreement with the known numerical results.

Keywords

Phenomenology of Field Theories in Higher Dimensions Phenomenology of Large extra dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
  3. [3]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].
  4. [4]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  5. [5]
    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE].
  7. [7]
    S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: The End of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].
  8. [8]
    L.A. Anchordoqui, J.L. Feng, H. Goldberg and A.D. Shapere, Black holes from cosmic rays: Probes of extra dimensions and new limits on TeV scale gravity, Phys. Rev. D 65 (2002) 124027 [hep-ph/0112247] [INSPIRE].
  9. [9]
    J.L. Feng and A.D. Shapere, Black hole production by cosmic rays, Phys. Rev. Lett. 88 (2002) 021303 [hep-ph/0109106] [INSPIRE].
  10. [10]
    A. Ringwald and H. Tu, Collider versus cosmic ray sensitivity to black hole production, Phys. Lett. B 525 (2002) 135 [hep-ph/0111042] [INSPIRE].
  11. [11]
    Y. Jho and S.C. Park, Constraining New Physics with High Multiplicity: I. Ultra-High Energy Cosmic Rays on air-shower detector arrays, arXiv:1806.03063 [INSPIRE].
  12. [12]
    M. Cavaglia, Black hole and brane production in TeV gravity: A Review, Int. J. Mod. Phys. A 18 (2003) 1843 [hep-ph/0210296] [INSPIRE].
  13. [13]
    P. Kanti, Black holes in theories with large extra dimensions: A Review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].
  14. [14]
    S.C. Park, Black holes and the LHC: A Review, Prog. Part. Nucl. Phys. 67 (2012) 617 [arXiv:1203.4683] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  16. [16]
    R. Emparan, G.T. Horowitz and R.C. Myers, Black holes radiate mainly on the brane, Phys. Rev. Lett. 85 (2000) 499 [hep-th/0003118] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S.A. Teukolsky, Rotating black holesseparable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett. 29 (1972) 1114 [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders: Greybody factors for brane fields, Phys. Rev. D 67 (2003) 064025 [Erratum ibid. D 69 (2004) 049901] [hep-th/0212108] [INSPIRE].
  19. [19]
    D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. II. Anisotropic scalar field emission, Phys. Rev. D 71 (2005) 124039 [hep-th/0503052] [INSPIRE].
  20. [20]
    D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. III. Determination of black hole evolution, Phys. Rev. D 73 (2006) 124022 [hep-th/0602188] [INSPIRE].
  21. [21]
    S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Greybody factors for brane scalar fields in a rotating black-hole background, Phys. Rev. D 75 (2007) 084043 [hep-th/0701288] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  22. [22]
    S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Greybody factors in a rotating black-hole background. II. Fermions and gauge bosons, Phys. Rev. D 76 (2007) 104013 [arXiv:0707.1768] [INSPIRE].
  23. [23]
    R. Jorge, E.S. de Oliveira and J.V. Rocha, Greybody factors for rotating black holes in higher dimensions, Class. Quant. Grav. 32 (2015) 065008 [arXiv:1410.4590] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C.M. Harris and P. Kanti, Hawking radiation from a (4 + n)-dimensional rotating black hole, Phys. Lett. B 633 (2006) 106 [hep-th/0503010] [INSPIRE].CrossRefzbMATHGoogle Scholar
  25. [25]
    G. Duffy, C. Harris, P. Kanti and E. Winstanley, Brane decay of a (4 + n)-dimensional rotating black hole: Spin-0 particles, JHEP 09 (2005) 049 [hep-th/0507274] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Casals, P. Kanti and E. Winstanley, Brane decay of a (4 + n)-dimensional rotating black hole. II. Spin-1 particles, JHEP 02 (2006) 051 [hep-th/0511163] [INSPIRE].
  27. [27]
    M. Casals, S.R. Dolan, P. Kanti and E. Winstanley, Brane Decay of a (4 + n)-Dimensional Rotating Black Hole. III. Spin-1/2 particles, JHEP 03 (2007) 019 [hep-th/0608193] [INSPIRE].
  28. [28]
    T. Harmark, J. Natario and R. Schiappa, Greybody Factors for d-Dimensional Black Holes, Adv. Theor. Math. Phys. 14 (2010) 727 [arXiv:0708.0017] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    V.P. Frolov and D. Stojkovic, Quantum radiation from a five-dimensional rotating black hole, Phys. Rev. D 67 (2003) 084004 [gr-qc/0211055] [INSPIRE].
  31. [31]
    A. Ronveaux, Heuns Differential Equations, Oxford University Press, Oxford Oxfordshire (1995).Google Scholar
  32. [32]
    J. Meixner and F.W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen, Springer, Berlin (1954).CrossRefzbMATHGoogle Scholar
  33. [33]
    J. Meixner, F.W. Schäfke and G. Wolf, Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations (Further Studies), Lect. Notes Math., vol. 837, Springer, Berlin (1980).Google Scholar
  34. [34]
    P.E. Falloon, P.C. Abbott and J.B. Wang, Theory and computation of spheroidal wavefunctions, J. Phys. A 36 (2003) 5477.MathSciNetzbMATHGoogle Scholar
  35. [35]
    V. Cardoso et al., NR/HEP: roadmap for the future, Class. Quant. Grav. 29 (2012) 244001 [arXiv:1201.5118] [INSPIRE].CrossRefzbMATHGoogle Scholar
  36. [36]
    D. Orlando and S.C. Park, Compact hyperbolic extra dimensions: a M-theory solution and its implications for the LHC, JHEP 08 (2010) 006 [arXiv:1006.1901] [INSPIRE].CrossRefzbMATHGoogle Scholar
  37. [37]
    D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].Google Scholar
  38. [38]
    S. Mano, H. Suzuki and E. Takasugi, Analytic solutions of the Teukolsky equation and their low frequency expansions, Prog. Theor. Phys. 95 (1996) 1079 [gr-qc/9603020] [INSPIRE].
  39. [39]
    S. Mano and E. Takasugi, Analytic solutions of the Teukolsky equation and their properties, Prog. Theor. Phys. 97 (1997) 213 [gr-qc/9611014] [INSPIRE].
  40. [40]
    M. Sasaki and H. Tagoshi, Analytic black hole perturbation approach to gravitational radiation, Living Rev. Rel. 6 (2003) 6 [gr-qc/0306120] [INSPIRE].
  41. [41]
    G.V. Kraniotis, The Klein-Gordon-Fock equation in the curved spacetime of the Kerr-Newman (anti) de Sitter black hole, Class. Quant. Grav. 33 (2016) 225011 [arXiv:1602.04830] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Young-Hwan Hyun
    • 1
  • Yoonbai Kim
    • 2
  • Seong Chan Park
    • 3
    Email author
  1. 1.Korea Institute of Science and Technology Information (KISTI)DaejeonRepublic of Korea
  2. 2.Department of Physics and Institute of Basic ScienceSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.Department of Physics and IPAPYonsei UniversitySeoulRepublic of Korea

Personalised recommendations