Advertisement

Strings on AdS3 × S3 × S3 × S1

  • Lorenz EberhardtEmail author
  • Matthias R. Gaberdiel
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

String theory on AdS3 × S3 × S3 × S1 with pure NS-NS flux and minimal flux through one of the two S3’s is studied from a world-sheet perspective. It is shown that the spacetime spectrum, as well as the algebra of spectrum generating operators, matches precisely that of the symmetric orbifold of S3 × S1 in the large N limit. This gives strong support for the proposal that these two descriptions are exactly dual to one another.

Keywords

AdS-CFT Correspondence Conformal Field Models in String Theory Long strings Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, ℝ) WZW model 1.: The Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  2. [2]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3 and the SL(2, ℝ) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].
  3. [3]
    J.M. Maldacena and H. Ooguri, Strings in AdS3 and the SL(2, ℝ) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
  4. [4]
    L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric Product CFT, JHEP 04 (2019) 103 [arXiv:1812.01007] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS3, JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].CrossRefzbMATHGoogle Scholar
  6. [6]
    G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS3 at k = 1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].CrossRefzbMATHGoogle Scholar
  7. [7]
    L. Eberhardt and M.R. Gaberdiel, String theory on AdS 3 and the symmetric orbifold of Liouville theory, arXiv:1903.00421 [INSPIRE].
  8. [8]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].CrossRefzbMATHGoogle Scholar
  9. [9]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS3 × S3 × S3 × S1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [INSPIRE].CrossRefzbMATHGoogle Scholar
  10. [10]
    L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS3 × S3 × S3 × S 1, JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2D \( \mathcal{N} \) = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The Search for a holographic dual to AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].CrossRefzbMATHGoogle Scholar
  13. [13]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].CrossRefzbMATHGoogle Scholar
  14. [14]
    M.R. Gaberdiel and S. Gerigk, The massless string spectrum on AdS3 × S3 from the supergroup, JHEP 10 (2011) 045 [arXiv:1107.2660] [INSPIRE].CrossRefzbMATHGoogle Scholar
  15. [15]
    M. Günaydin, J.L. Petersen, A. Taormina and A. Van Proeyen, On the Unitary Representations of a Class of \( \mathcal{N} \) = 4 Superconformal Algebras, Nucl. Phys. B 322 (1989) 402 [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    M.R. Gaberdiel and R. Gopakumar, Large \( \mathcal{N} \) = 4 Holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    J. Troost, Massless particles on supergroups and AdS3 × S3 supergravity, JHEP 07 (2011) 042 [arXiv:1102.0153] [INSPIRE].CrossRefzbMATHGoogle Scholar
  18. [18]
    A. Sevrin, W. Troost and A. Van Proeyen, Superconformal Algebras in Two-Dimensions with \( \mathcal{N} \) = 4, Phys. Lett. B 208 (1988) 447 [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS3 × S3 × S3 × S1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].CrossRefzbMATHGoogle Scholar
  20. [20]
    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].CrossRefzbMATHGoogle Scholar
  21. [21]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
  22. [22]
    M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefanski and A. Torrielli, Protected string spectrum in AdS3 /CFT2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].CrossRefzbMATHGoogle Scholar
  23. [23]
    K. Ito, J.O. Madsen and J.L. Petersen, Free field representations and screening operators for the \( \mathcal{N} \) = 4 doubly extended superconformal algebras, Phys. Lett. B 292 (1992) 298 [hep-th/9207010] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    P. Goddard and A. Schwimmer, Factoring Out Free Fermions and Superconformal Algebras, Phys. Lett. B 214 (1988) 209 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [INSPIRE].
  26. [26]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer (1996) [INSPIRE].
  27. [27]
    I. Bars, Free fields and new cosets of current algebras, Phys. Lett. B 255 (1991) 353 [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    G. Götz, T. Quella and V. Schomerus, The WZNW model on PSU(1, 1|2), JHEP 03 (2007) 003 [hep-th/0610070] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    P. Bowcock, B.L. Feigin, A.M. Semikhatov and A. Taormina, Affine \( \mathfrak{s}\mathfrak{l}\left(2\Big|1\right) \) and affine \( \mathfrak{d} \)(2, 1; α) as vertex operator extensions of dual affine \( \mathfrak{s}\mathfrak{l}(2) \) algebras, Commun. Math. Phys. 214 (2000) 495 [hep-th/9907171] [INSPIRE].
  30. [30]
    T. Creutzig and D. Gaiotto, Vertex Algebras for S-duality, arXiv:1708.00875 [INSPIRE].
  31. [31]
    V.G. Kac and D.A. Kazhdan, Structure of representations with highest weight of infinite dimensional Lie algebras, Adv. Math. 34 (1979) 97 [INSPIRE].CrossRefzbMATHGoogle Scholar
  32. [32]
    T. Creutzig and D. Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models II, Nucl. Phys. B 875 (2013) 423 [arXiv:1306.4388] [INSPIRE].CrossRefzbMATHGoogle Scholar
  33. [33]
    D. Adamovic and A. Milas, Vertex operator algebras associated to modular invariant representations for A1(1), Math. Res. Lett. 2 (1995) 563 [q-alg/9509025].
  34. [34]
    S. Mukhi and S. Panda, Fractional Level Current Algebras and the Classification of Characters, Nucl. Phys. B 338 (1990) 263 [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    T. Creutzig and D. Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models I, Nucl. Phys. B 865 (2012) 83 [arXiv:1205.6513] [INSPIRE].CrossRefzbMATHGoogle Scholar
  36. [36]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher Spin Black Holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].CrossRefzbMATHGoogle Scholar
  37. [37]
    D. Ridout, \( \mathfrak{s}\mathfrak{l}{(2)}_{-1/2} \) : A Case Study, Nucl. Phys. B 814 (2009) 485 [arXiv:0810.3532] [INSPIRE].
  38. [38]
    D. Ridout, \( \mathfrak{s}\mathfrak{l}{(2)}_{-1/2} \) and the Triplet Model, Nucl. Phys. B 835 (2010) 314 [arXiv:1001.3960] [INSPIRE].
  39. [39]
    D. Ridout, Fusion in Fractional Level \( \mathfrak{s}\mathfrak{l}(2) \) Theories with k = \( -\frac{1}{2} \), Nucl. Phys. B 848 (2011) 216 [arXiv:1012.2905] [INSPIRE].
  40. [40]
    T. Quella and V. Schomerus, Free fermion resolution of supergroup WZNW models, JHEP 09 (2007) 085 [arXiv:0706.0744] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    M.R. Gaberdiel and I. Runkel, From boundary to bulk in logarithmic CFT, J. Phys. A 41 (2008) 075402 [arXiv:0707.0388] [INSPIRE].zbMATHGoogle Scholar
  42. [42]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer (2013) [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikETH ZurichZürichSwitzerland

Personalised recommendations