Advertisement

Matching for FCNC effects in the flavour-symmetric SMEFT

  • Tobias Hurth
  • Sophie RennerEmail author
  • William Shepherd
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate the complete tree and one-loop matching of the dimension-six Standard Model Effective Field Theory (SMEFT) with unbroken U(3)5 flavour symmetry to the operators of the Weak Effective Theory (WET) which are responsible for flavour changing neutral current effects among down-type quarks. We also explicitly calculate the effects of SMEFT corrections to input observables on the WET Wilson coefficients, a necessary step on the way to a well-defined, complete prediction. These results will enable high-precision flavour data to be incorporated into global fits of the SMEFT at high energies, where the flavour symmetry assumption is widespread.

Keywords

Beyond Standard Model Effective Field Theories Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031, CERN, Geneva, Switzerland (2018).
  4. [4]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
  5. [5]
    I. Brivio and M. Trott, The Standard Model as an effective field theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.C. Criado, MatchingTools: a Python library for symbolic effective field theory calculations, Comput. Phys. Commun. 227 (2018) 42 [arXiv:1710.06445] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J. C 79 (2019) 21 [arXiv:1808.04403] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].CrossRefzbMATHGoogle Scholar
  10. [10]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and lambda dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].CrossRefzbMATHGoogle Scholar
  11. [11]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
  14. [14]
    L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    L. Berthier and M. Trott, Consistent constraints on the Standard Model effective field theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    M. Bjørn and M. Trott, Interpreting W mass measurements in the SMEFT, Phys. Lett. B 762 (2016) 426 [arXiv:1606.06502] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. É boli and M.C. Gonzalez-Garcia, Electroweak sector under scrutiny: a combined analysis of LHC and electroweak precision data, Phys. Rev. D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].
  20. [20]
    C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev. D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].Google Scholar
  21. [21]
    R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to h\( b\overline{b} \) and h\( \tau \overline{\tau} \) decays in the Standard Model dimension-6 EFT: four-fermion operators and the large-m t limit, JHEP 05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
  22. [22]
    C. Hartmann and M. Trott, On one-loop corrections in the Standard Model effective field theory; the Γ(hγγ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    R. Gauld, B.D. Pecjak and D.J. Scott, QCD radiative corrections for h\( b\overline{b} \) in the Standard Model dimension-6 EFT, Phys. Rev. D 94 (2016) 074045 [arXiv:1607.06354] [INSPIRE].
  24. [24]
    F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model effective field theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    C. Zhang, Single top production at next-to-leading order in the Standard Model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    C. Hartmann, W. Shepherd and M. Trott, The Z decay width in the SMEFT: y t and λ corrections at one loop, JHEP 03 (2017) 060 [arXiv:1611.09879] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W + W production at the LHC including fermionic operators, Phys. Rev. D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].Google Scholar
  28. [28]
    S. Dawson and P.P. Giardino, Higgs decays to ZZ and Zγ in the Standard Model effective field theory: an NLO analysis, Phys. Rev. D 97 (2018) 093003 [arXiv:1801.01136] [INSPIRE].Google Scholar
  29. [29]
    S. Dawson and A. Ismail, Standard Model EFT corrections to Z boson decays, Phys. Rev. D 98 (2018) 093003 [arXiv:1808.05948] [INSPIRE].Google Scholar
  30. [30]
    E. Vryonidou and C. Zhang, Dimension-six electroweak top-loop effects in Higgs production and decay, JHEP 08 (2018) 036 [arXiv:1804.09766] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    S. Dawson and P.P. Giardino, Electroweak corrections to Higgs boson decays to γγ and W + W in Standard Model EFT, Phys. Rev. D 98 (2018) 095005 [arXiv:1807.11504] [INSPIRE].Google Scholar
  32. [32]
    S. Dawson, P.P. Giardino and A. Ismail, Standard Model EFT and the Drell-Yan process at high energy, Phys. Rev. D 99 (2019) 035044 [arXiv:1811.12260] [INSPIRE].Google Scholar
  33. [33]
    S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dijet events, JHEP 01 (2018) 094 [arXiv:1711.07484] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dilepton events, arXiv:1812.07575 [INSPIRE].
  35. [35]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
  36. [36]
    J.P. Lee and K.Y. Lee, B d - \( {\overline{B}}_d \) mixing versus B s - \( {\overline{B}}_s \) mixing with the anomalous Wtb couplings, arXiv:0809.0751 [INSPIRE].
  37. [37]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Interplay of tbW decay and B q meson mixing in minimal flavor violating models, Phys. Lett. B 701 (2011) 234 [arXiv:1102.4347] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [Erratum ibid. D 88 (2013) 039903] [arXiv:1107.3143] [INSPIRE].
  39. [39]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Probing anomalous tWb interactions with rare B decays, Nucl. Phys. B 855 (2012) 82 [arXiv:1109.2357] [INSPIRE].CrossRefzbMATHGoogle Scholar
  40. [40]
    R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous \( t\overline{t}Z \) interactions with rare meson decays, JHEP 02 (2015) 141 [arXiv:1408.0792] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    C. Bobeth and U. Haisch, Anomalous triple gauge couplings from B-meson and kaon observables, JHEP 09 (2015) 018 [arXiv:1503.04829] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].Google Scholar
  45. [45]
    M. González-Alonso and J. Martin Camalich, Global effective-field-theory analysis of new-physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [arXiv:1605.07114] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    F. Feruglio, P. Paradisi and A. Pattori, Revisiting lepton flavor universality in B decays, Phys. Rev. Lett. 118 (2017) 011801 [arXiv:1606.00524] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    F. Feruglio, P. Paradisi and A. Pattori, On the importance of electroweak corrections for B anomalies, JHEP 09 (2017) 061 [arXiv:1705.00929] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    M. Bordone, G. Isidori and S. Trifinopoulos, Semileptonic B-physics anomalies: a general EFT analysis within U(2)n flavor symmetry, Phys. Rev. D 96 (2017) 015038 [arXiv:1702.07238] [INSPIRE].Google Scholar
  49. [49]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, JHEP 07 (2017) 124 [arXiv:1703.04753] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality, Phys. Rev. D 96 (2017) 035026 [arXiv:1704.05672] [INSPIRE].Google Scholar
  51. [51]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    C. Cornella, F. Feruglio and P. Paradisi, Low-energy effects of lepton flavour universality violation, JHEP 11 (2018) 012 [arXiv:1803.00945] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].
  54. [54]
    M. Endo, T. Kitahara and D. Ueda, SMEFT top-quark effects on ΔF = 2 observables, arXiv:1811.04961 [INSPIRE].
  55. [55]
    L. Silvestrini and M. Valli, Model-independent bounds on the Standard Model effective theory from flavour physics, arXiv:1812.10913 [INSPIRE].
  56. [56]
    S. Descotes-Genon, A. Falkowski, M. Fedele, M. González-Alonso and J. Virto, The CKM parameters in the SMEFT, arXiv:1812.08163 [INSPIRE].
  57. [57]
    J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A global likelihood for precision constraints and flavour anomalies, arXiv:1810.07698 [INSPIRE].
  58. [58]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: the Standard Model effective field theory toolkit, Eur. Phys. J. C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  61. [61]
    I. Brivio and M. Trott, Scheming in the SMEFT. . . And a reparameterization invariance!, JHEP 07 (2017) 148 [Addendum ibid. 05 (2018) 136] [arXiv:1701.06424] [INSPIRE].
  62. [62]
    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].
  63. [63]
    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for the Standard Model effective field theory in R ξ -gauges, JHEP 06 (2017) 143 [arXiv:1704.03888] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  65. [65]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  66. [66]
    T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes K L\( \mu \overline{\mu} \) , K +π + \( \nu \overline{\nu} \) and K 0\( {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
  67. [67]
    E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: anomalous dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE].CrossRefzbMATHGoogle Scholar
  68. [68]
    J. Aebischer, M. Fael, C. Greub and J. Virto, B physics beyond the Standard Model at one loop: complete renormalization group evolution below the electroweak scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  69. [69]
    I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Tobias Hurth
    • 1
  • Sophie Renner
    • 1
    Email author
  • William Shepherd
    • 1
    • 2
  1. 1.PRISMA+ Cluster of Excellence & Mainz Institute of Theoretical PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Physics DepartmentSam Houston State UniversityHuntsvilleU.S.A.

Personalised recommendations