Advertisement

Taming boundary condition changing operator anomalies with the tachyon vacuum

  • Theodore ErlerEmail author
  • Carlo Maccaferri
  • Ruggero Noris
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

Motivated by the appearance of associativity anomalies in the context of superstring field theory, we give a generalized solution built from boundary condition changing operators which can be associated to a generic tachyon vacuum in the KBc subalgebra of the Okawa form. We articulate sufficient conditions on the choice of tachyon vacuum to ensure that ambiguous products do not appear in the equations of motion.

Keywords

String Field Theory Superstring Vacua Tachyon Condensation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Erler and C. Maccaferri, String Field Theory Solution for Any Open String Background, JHEP 10 (2014) 029 [arXiv:1406.3021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Ishibashi, I. Kishimoto, T. Masuda and T. Takahashi, Vector profile and gauge invariant observables of string field theory solutions for constant magnetic field background, JHEP 05 (2018) 144 [arXiv:1804.01284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Maccaferri and M. Schnabl, Large BCFT moduli in open string field theory, JHEP 08 (2015) 149 [arXiv:1506.03723] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Ishibashi, I. Kishimoto and T. Takahashi, String field theory solution corresponding to constant background magnetic field, PTEP 2017 (2017) 013B06 [arXiv:1610.05911] [INSPIRE].
  6. [6]
    I. Kishimoto, T. Masuda, T. Takahashi and S. Takemoto, Open String Fields as Matrices, PTEP 2015 (2015) 033B05 [arXiv:1412.4855] [INSPIRE].
  7. [7]
    C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I.Ya. Arefeva, P.B. Medvedev and A.P. Zubarev, New Representation for String Field Solves the Consistency Problem for Open Superstring Field Theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].
  9. [9]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  10. [10]
    T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Erler, The Identity String Field and the Sliver Frame Level Expansion, JHEP 11 (2012) 150 [arXiv:1208.6287] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Erler, Exotic Universal Solutions in Cubic Superstring Field Theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Jokel, Real Tachyon Vacuum Solution without Square Roots, arXiv:1704.02391 [INSPIRE].
  17. [17]
    T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Hata and T. Kojita, Singularities in K-space and Multi-brane Solutions in Cubic String Field Theory, JHEP 02 (2013) 065 [arXiv:1209.4406] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    T. Erler, A simple analytic solution for tachyon condensation, Theor. Math. Phys. 163 (2010) 705 [Teor. Mat. Fiz. 163 (2010) 366]. [INSPIRE].
  21. [21]
    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Hata and T. Kojita, Inversion Symmetry of Gravitational Coupling in Cubic String Field Theory, JHEP 12 (2013) 019 [arXiv:1307.6636] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory, JHEP 05 (2014) 021 [arXiv:1211.2649] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C. Maccaferri, A simple solution for marginal deformations in open string field theory, JHEP 05 (2014) 004 [arXiv:1402.3546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Ishibashi, Comments on Takahashi-Tanimotos scalar solution, JHEP 02 (2015) 168 [arXiv:1408.6319] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    T. Erler, Analytic solution for tachyon condensation in Berkovitsopen superstring field theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Theodore Erler
    • 1
    Email author
  • Carlo Maccaferri
    • 2
    • 4
  • Ruggero Noris
    • 3
    • 4
  1. 1.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic
  2. 2.Dipartimento di FisicaUniversitá di TorinoTorinoItaly
  3. 3.DISAT, Politecnico di TorinoTorinoItaly
  4. 4.INFN Sezione di Torino and Arnold-Regge CenterTorinoItaly

Personalised recommendations