Advertisement

Unitary and non-unitary N = 2 minimal models

  • Thomas Creutzig
  • Tianshu LiuEmail author
  • David Ridout
  • Simon Wood
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

The unitary N = 2 superconformal minimal models have a long history in string theory and mathematical physics, while their non-unitary (and logarithmic) cousins have recently attracted interest from mathematicians. Here, we give an efficient and uniform analysis of all these models as an application of a type of Schur-Weyl duality, as it pertains to the well-known Kazama-Suzuki coset construction. The results include straight-forward classifications of the irreducible modules, branching rules, (super)characters and (Grothendieck) fusion rules.

Keywords

Conformal and W Symmetry Conformal Field Theory Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Ademollo et al., Supersymmetric strings and color confinement, Phys. Lett. 62B (1976) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Di Vecchia, J.L. Petersen and H.B. Zheng, N = 2 extended superconformal theories in two-dimensions, Phys. Lett. 162B (1985) 327 [INSPIRE].
  3. [3]
    W. Boucher, D. Friedan and A. Kent, Determinant formulae and unitarity for the N = 2 superconformal algebras in two-dimensions or exact results on string compactification, Phys. Lett. B 172 (1986) 316 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Nam, The Kac formula for the N = 1 and the N = 2 super-conformal algebras, Phys. Lett. B 172 (1986) 323 [INSPIRE].
  5. [5]
    A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].
  6. [6]
    A.B. Zamolodchikov and V.A. Fateev, Disorder fields in two-dimensional conformal quantum field theory and N = 2 extended supersymmetry, Sov. Phys. JETP 63 (1986) 913 [INSPIRE].
  7. [7]
    P. Di Vecchia, J.L. Petersen and M. Yu, On the unitary representations of N = 2 superconformal theory, Phys. Lett. B 172 (1986) 211 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Explicit construction of unitary representations of the N = 2 superconformal algebra, Phys. Lett. B 174 (1986) 280 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Eguchi and A. Taormina, On the unitary representations of N = 2 and N = 4 superconformal algebras, Phys. Lett. B 210 (1988) 125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    Y. Kazama and H. Suzuki, Characterization of N = 2 superconformal models generated by coset space method, Phys. Lett. B 216 (1989) 112 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    V.K. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. B 186 (1987) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. Matsuo, Character formula of C < 1 unitary representation of N = 2 superconformal algebra, Prog. Theor. Phys. 77 (1987) 793 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Dörrzapf, Singular vectors of the N = 2 superconformal algebra, Int. J. Mod. Phys. A 10 (1995) 2143 [hep-th/9403124] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    W. Eholzer and M.R. Gaberdiel, Unitarity of rational N = 2 superconformal theories, Commun. Math. Phys. 186 (1997) 61 [hep-th/9601163] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Dörrzapf, The embedding structure of unitary N = 2 minimal models, Nucl. Phys. B 529 (1998) 639 [hep-th/9712165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Ravanini and S.-K. Yang, Modular invariance in N = 2 superconformal field theories, Phys. Lett. B 195 (1987) 202 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Z.-a. Qiu, Modular invariant partition functions for N = 2 superconformal field theories, Phys. Lett. B 198 (1987) 497 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Wakimoto, Fusion rules for N = 2 superconformal modules, hep-th/9807144 [INSPIRE].
  21. [21]
    D. Adamović, Vertex algebra approach to fusion rules for N = 2 superconformal minimal models, J. Algebra 239 (2001) 549.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    V Kac, S Roan and M Wakimoto, Quantum reduction for affine superalgebras, Commun. Math. Phys. 241 (2003) 307 [math-ph/0302015].
  23. [23]
    V.G. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, math-ph/0304011 [INSPIRE].
  24. [24]
    A. Semikhatov, A. Taormina and I. Yu. Tipunin, Higher-level Appell functions, modular transformations, and characters, Commun. Math. Phys. 255 (2005) 469 [hep-th/0311314].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    V. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions, Transform. Groups 19 (2014) 383 [arXiv:1308.1261].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions II, Adv. Math. 300 (2016) 17 [arXiv:1402.0727] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    V. Kac and M. Wakimoto, Representations of superconformal algebras and mock theta functions, Trans. Moscow Math. Soc. 78 (2017) 9 [arXiv:1701.03344].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    B.L. Feigin, A.M. Semikhatov and I. Yu. Tipunin, Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras, J. Math. Phys. 39 (1998) 3865 [hep-th/9701043] [INSPIRE].
  29. [29]
    A.M. Semikhatov and V.A. Sirota, Embedding diagrams of N = 2 Verma modules and relaxed sl(2) Verma modules, hep-th/9712102 [INSPIRE].
  30. [30]
    B.L. Feigin, A.M. Semikhatov, V.A. Sirota and I. Yu. Tipunin, Resolutions and characters of irreducible representations of the N = 2 superconformal algebra, Nucl. Phys. B 536 (1998) 617 [hep-th/9805179] [INSPIRE].
  31. [31]
    D. Adamović, Representations of the N = 2 superconformal vertex algebra, Int. Math. Res. Not. 1999 (1999) 61 [math.QA/9809141].
  32. [32]
    R. Sato, Equivalences between weight modules via \( \mathcal{N} \) = 2 coset constructions, arXiv:1605.02343 [INSPIRE].
  33. [33]
    R. Sato, Modular invariant representations of the \( \mathcal{N} \) = 2 superconformal algebra, arXiv:1706.04882 [INSPIRE].
  34. [34]
    S. Koshida and R. Sato, On resolution of highest weight modules over the \( \mathcal{N} \) = 2 superconformal algebra, arXiv:1810.13147 [INSPIRE].
  35. [35]
    D. Adamović and A. Milas, Vertex operator algebras associated to modular invariant representations of A 1(1), Math. Res. Lett. 2 (1995) 563 [q-alg/9509025].
  36. [36]
    M.R. Gaberdiel, Fusion rules and logarithmic representations of a WZW model at fractional level, Nucl. Phys. B 618 (2001) 407 [hep-th/0105046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    D. Ridout, \( \widehat{\mathfrak{sl}} \)(2)−1/2 : A case study, Nucl. Phys. B 814 (2009) 485 [arXiv:0810.3532] [INSPIRE].
  38. [38]
    D. Ridout, \( \widehat{\mathfrak{sl}} \)(2)−1/2 and the triplet model, Nucl. Phys. B 835 (2010) 314 [arXiv:1001.3960] [INSPIRE].
  39. [39]
    D. Ridout, Fusion in fractional level \( \widehat{\mathfrak{sl}} \)(2)-theories with k = − \( \frac{1}{2} \), Nucl. Phys. B 848 (2011) 216 [arXiv:1012.2905] [INSPIRE].
  40. [40]
    T. Creutzig and D. Ridout, Modular data and Verlinde formulae for fractional level WZW models I, Nucl. Phys. B 865 (2012) 83 [arXiv:1205.6513] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Creutzig and D. Ridout, Modular data and Verlinde formulae for fractional level WZW models II, Nucl. Phys. B 875 (2013) 423 [arXiv:1306.4388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. Ridout and S. Wood, Relaxed singular vectors, Jack symmetric functions and fractional level \( \widehat{\mathfrak{sl}} \)(2) models, Nucl. Phys. B 894 (2015) 621 [arXiv:1501.07318] [INSPIRE].
  43. [43]
    T. Creutzig and A.R. Linshaw, Cosets of affine vertex algebras inside larger structures, J. Algebra 517 (2019) 396 [arXiv:1407.8512] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Creutzig, S. Kanade and A. Linshaw, Simple current extensions beyond semi-simplicity, Commun. Contemp. Math. (2019) 1950001 [arXiv:1511.08754].
  45. [45]
    T. Creutzig, S. Kanade, A.R. Linshaw and D. Ridout, Schur-Weyl Duality for Heisenberg Cosets, Transform. Groups 24 (2019) 301 [arXiv:1611.00305] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017 [INSPIRE].
  47. [47]
    V. Kac and A. Radul, Representation theory of the vertex algebra W(1+infinity), hep-th/9512150 [INSPIRE].
  48. [48]
    C. Dong, H. Li and G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. 1996 (1996) 913 [q-alg/9608009].
  49. [49]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, arXiv:1012.4193 [INSPIRE].
  50. [50]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196 [INSPIRE].
  51. [51]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197 [INSPIRE].
  52. [52]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, IV: Constructions of tensor product bifunctors and the compatibility conditions, arXiv:1012.4198 [INSPIRE].
  53. [53]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, V: Convergence condition for intertwining maps and the corresponding compatibility condition, arXiv:1012.4199 [INSPIRE].
  54. [54]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VI: Expansion condition, associativity of logarithmic intertwining operators and the associativity isomorphisms, arXiv:1012.4202 [INSPIRE].
  55. [55]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VII: Convergence and extension properties and applications to expansion for intertwining maps, arXiv:1110.1929 [INSPIRE].
  56. [56]
    Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, arXiv:1110.1931 [INSPIRE].
  57. [57]
    Y.-Z. Huang, A. Kirillov Jr. and J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys. 337 (2015) 1143 [arXiv:1406.3420] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    D. Ridout and S. Wood, The Verlinde formula in logarithmic CFT, J. Phys. Conf. Ser. 597 (2015) 012065 [arXiv:1409.0670] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    J. Auger, T. Creutzig and D. Ridout, Modularity of logarithmic parafermion vertex algebras, Lett. Math. Phys. 108 (2018) 2543 [arXiv:1704.05168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    T. Creutzig, J. Frohlich and S. Kanade, Representation theory of L k (\( \mathfrak{o}\mathfrak{s}\mathfrak{p} \)(1|2)) from vertex tensor categories and Jacobi forms, arXiv:1706.00242.
  61. [61]
    T. Creutzig, S. Kanade, T. Liu and D. Ridout, Cosets, characters and fusion for admissible-level \( \mathfrak{o}\mathfrak{s}\mathfrak{p} \)(1|2) minimal models, Nucl. Phys. B 938 (2019) 22 [arXiv:1806.09146] [INSPIRE].
  62. [62]
    T. Creutzig and D. Ridout, Logarithmic conformal field theory: beyond an introduction, J. Phys. A 46 (2013) 4006 [arXiv:1303.0847] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  63. [63]
    D. Adamović, Realizations of simple affine vertex algebras and their modules: the cases \( \widehat{sl(2)} \) and \( \widehat{osp\left(1,2\right)} \). arXiv:1711.11342.
  64. [64]
    K. Kawasetsu and D. Ridout, Relaxed highest-weight modules I: rank 1 cases, Commun. Math. Phys. 368 (2019) 627 [arXiv:1803.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    V. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988) 4956.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    I.G. Koh and P. Sorba, Fusion Rules and (Sub)Modular Invariant Partition Functions in Nonunitary Theories, Phys. Lett. B 215 (1988) 723 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock Modular Forms, arXiv:1208.4074 [INSPIRE].
  68. [68]
    K. Bringmann, T. Creutzig and L. Rolen, Negative index Jacobi forms and quantum modular forms, arXiv:1401.7189 [INSPIRE].
  69. [69]
    K. Bringmann, L. Rolen and S. Zwegers, On the Fourier coefficients of negative index meromorphic Jacobi forms, arXiv:1501.04476 [INSPIRE].
  70. [70]
    M. Gorelik and V. Kac. On simplicity of vacuum modules, Adv. Math. 211 (2007) 621 [math-ph/0606002].
  71. [71]
    W. Eholzer and R. Hübel, Fusion algebras of fermionic rational conformal field theories via a generalized Verlinde formula, Nucl. Phys. B 414 (1994) 348 [hep-th/9307031] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    M. Canagasabey and D. Ridout, Fusion rules for the logarithmic N = 1 superconformal minimal models II: Including the Ramond sector, Nucl. Phys. B 905 (2016) 132 [arXiv:1512.05837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    T. Creutzig, Y.-Z. Huang and J. Yang, Braided tensor categories of admissible modules for affine Lie algebras, Commun. Math. Phys. 362 (2018) 827 [arXiv:1709.01865] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    V.G. Kac and D.H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984) 125 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Progr. Math. 123 (1994) 415 [hep-th/9407057] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  76. [76]
    C. Alfes and T. Creutzig, The mock modular data of a family of superalgebras, Proc. Am. Math. Soc. 142 (2014) 2265 [arXiv:1205.1518] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    T. Creutzig and D. Ridout, Relating the archetypes of logarithmic conformal field theory, Nucl. Phys. B 872 (2013) 348 [arXiv:1107.2135] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    Y.-Z. Huang, Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Nat. Acad. Sci. 102 (2005) 5352 [math/0412261] [INSPIRE].
  79. [79]
    T. Creutzig, Fusion categories for affine vertex algebras at admissible levels. arXiv:1807.00415.
  80. [80]
    T. Liu, Coset construction for the N = 2 and osp(1|2) minimal models, Ph.D. Thesis, School of Mathematics and Statistics, University of Melbourne, Australia, submitted.Google Scholar
  81. [81]
    K. Kytölä and D. Ridout, On staggered indecomposable Virasoro modules, J. Math. Phys. 50 (2009) 123503 [arXiv:0905.0108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  3. 3.School of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia
  4. 4.School of MathematicsCardiff UniversityCardiffUnited Kingdom

Personalised recommendations