Advertisement

Off-shell single-top-quark production in the Standard Model Effective Field Theory

  • Tobias NeumannEmail author
  • Zack Sullivan
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We present a fully differential and spin-dependent t-channel single-top-quark calculation at next-to-leading order (NLO) in QCD including off-shell effects by using the complex mass scheme in the Standard Model (SM) and in the Standard Model Effective Field Theory (SMEFT). We include all relevant SMEFT operators at 1/Λ2 that contribute at NLO in QCD for a fully consistent comparison to the SM at NLO. In addition, we include chirality flipping operators that do not interfere with the SM amplitude and contribute only at 1/Λ4 with a massless b-quark. Such higher order effects are usually captured by considering anomalous right-handed Wtb and left-handed Wtb tensor couplings. Despite their formal suppression in the SMEFT, they describe an important class of models for new physics. Our calculation and analysis framework is publicly available in MCFM.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 717 (2012) 330 [arXiv:1205.3130] [INSPIRE].
  2. [2]
    ATLAS collaboration, Comprehensive measurements of t-channel single top-quark production cross sections at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112006 [arXiv:1406.7844] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [INSPIRE].
  4. [4]
    ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of the t-channel single top quark production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [INSPIRE].
  6. [6]
    CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].
  7. [7]
    CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 772 (2017) 752 [arXiv:1610.00678] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the top quark mass using single top quark events in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 77 (2017) 354 [arXiv:1703.02530] [INSPIRE].
  9. [9]
    CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of top quark polarisation in t-channel single top quark production, JHEP 04 (2016) 073 [arXiv:1511.02138] [INSPIRE].
  11. [11]
    CMS collaboration, Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 02 (2017) 028 [arXiv:1610.03545] [INSPIRE].
  12. [12]
    ATLAS collaboration, Analysis of the Wtb vertex from the measurement of triple-differential angular decay rates of single top quarks produced in the t-channel at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 12 (2017) 017 [arXiv:1707.05393] [INSPIRE].
  13. [13]
    ATLAS collaboration, Probing the Wtb vertex structure in t-channel single-top-quark production and decay in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 04 (2017) 124 [arXiv:1702.08309] [INSPIRE].
  14. [14]
    T. Stelzer, Z. Sullivan and S. Willenbrock, Single top quark production via W-gluon fusion at next-to-leading order, Phys. Rev. D 56 (1997) 5919 [hep-ph/9705398] [INSPIRE].
  15. [15]
    ATLAS and CMS collaborations, Combinations of single-top-quark production cross-section measurements and |f LV V tb| determinations at \( \sqrt{s} \) = 7 and 8 TeV with the ATLAS and CMS experiments, JHEP 05 (2019) 088 [arXiv:1902.07158] [INSPIRE].
  16. [16]
    G. Mahlon and S.J. Parke, Improved spin basis for angular correlation studies in single top quark production at the Tevatron, Phys. Rev. D 55 (1997) 7249 [hep-ph/9611367] [INSPIRE].
  17. [17]
    G. Mahlon and S.J. Parke, Single top quark production at the LHC: understanding spin, Phys. Lett. B 476 (2000) 323 [hep-ph/9912458] [INSPIRE].
  18. [18]
    ATLAS collaboration, Measurement of the top quark mass in topologies enhanced with single top quarks produced in the t-channel at \( \sqrt{s} \) = 8 TeV using the ATLAS experiment, in Proceedings, 7th International Workshop on Top Quark Physics (TOP2014), Cannes, France, 28 September–3 October 2014 [arXiv:1411.3879] [INSPIRE].
  19. [19]
    Z. Sullivan, Are PDFs still consistent with Tevatron data?, EPJ Web Conf. 172 (2018) 03008 [arXiv:1711.04018] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    N.A. Abdulov, H. Jung, A.V. Lipatov, G.I. Lykasov and M.A. Malyshev, Employing RHIC and LHC data to determine the transverse momentum dependent gluon density in a proton, Phys. Rev. D 98 (2018) 054010 [arXiv:1806.06739] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T.M.P. Tait and C.P. Yuan, The phenomenology of single top quark production at the Fermilab Tevatron, hep-ph/9710372 [INSPIRE].
  22. [22]
    T.M.P. Tait and C.P. Yuan, Single top quark production as a window to physics beyond the Standard Model, Phys. Rev. D 63 (2000) 014018 [hep-ph/0007298] [INSPIRE].
  23. [23]
    J.A. Aguilar-Saavedra and J. Bernabeu, W polarisation beyond helicity fractions in top quark decays, Nucl. Phys. B 840 (2010) 349 [arXiv:1005.5382] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    J.A. Aguilar-Saavedra and S. Amor Dos Santos, New directions for top quark polarization in the t-channel process, Phys. Rev. D 89 (2014) 114009 [arXiv:1404.1585] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.A. Aguilar-Saavedra and J. Bernabeu, Breaking down the entire W boson spin observables from its decay, Phys. Rev. D 93 (2016) 011301 [arXiv:1508.04592] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.A. Aguilar-Saavedra, J. Boudreau, C. Escobar and J. Mueller, The fully differential top decay distribution, Eur. Phys. J. C 77 (2017) 200 [arXiv:1702.03297] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Bordes and B. van Eijk, Calculating QCD corrections to single top production in hadronic interactions, Nucl. Phys. B 435 (1995) 23 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Kant et al., HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun. 191 (2015) 74 [arXiv:1406.4403] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan and S. Weinzierl, The fully differential single top quark cross-section in next to leading order QCD, Phys. Rev. D 66 (2002) 054024 [hep-ph/0207055] [INSPIRE].
  30. [30]
    Z. Sullivan, Understanding single-top-quark production and jets at hadron colliders, Phys. Rev. D 70 (2004) 114012 [hep-ph/0408049] [INSPIRE].
  31. [31]
    Z. Sullivan, Angular correlations in single-top-quark and Wjj production at next-to-leading order, Phys. Rev. D 72 (2005) 094034 [hep-ph/0510224] [INSPIRE].
  32. [32]
    Q.-H. Cao and C.P. Yuan, Single top quark production and decay at next-to-leading order in hadron collision, Phys. Rev. D 71 (2005) 054022 [hep-ph/0408180] [INSPIRE].
  33. [33]
    J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].
  34. [34]
    R. Schwienhorst, C.P. Yuan, C. Mueller and Q.-H. Cao, Single top quark production and decay in the t-channel at next-to-leading order at the LHC, Phys. Rev. D 83 (2011) 034019 [arXiv:1012.5132] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP 10 (2009) 042 [arXiv:0907.3933] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.M. Campbell and R.K. Ellis, Top-quark processes at NLO in production and decay, J. Phys. G 42 (2015) 015005 [arXiv:1204.1513] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].
  39. [39]
    R. Pittau, Final state QCD corrections to off-shell single top production in hadron collisions, Phys. Lett. B 386 (1996) 397 [hep-ph/9603265] [INSPIRE].
  40. [40]
    M. Beneke, A.P. Chapovsky, A. Signer and G. Zanderighi, Effective theory calculation of resonant high-energy scattering, Nucl. Phys. B 686 (2004) 205 [hep-ph/0401002] [INSPIRE].
  41. [41]
    P. Falgari, F. Giannuzzi, P. Mellor and A. Signer, Off-shell effects for t-channel and s-channel single-top production at NLO in QCD, Phys. Rev. D 83 (2011) 094013 [arXiv:1102.5267] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Falgari, P. Mellor and A. Signer, Production-decay interferences at NLO in QCD for t-channel single-top production, Phys. Rev. D 82 (2010) 054028 [arXiv:1007.0893] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A.S. Papanastasiou, R. Frederix, S. Frixione, V. Hirschi and F. Maltoni, Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett. B 726 (2013) 223 [arXiv:1305.7088] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  46. [46]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  47. [47]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  48. [48]
    A. Denner and J.-N. Lang, The complex-mass scheme and unitarity in perturbative quantum field theory, Eur. Phys. J. C 75 (2015) 377 [arXiv:1406.6280] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].
  50. [50]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE].
  51. [51]
    N. Kidonakis, Higher-order soft gluon corrections in single top quark production at the LHC, Phys. Rev. D 75 (2007) 071501 [hep-ph/0701080] [INSPIRE].
  52. [52]
    J. Wang, C.S. Li, H.X. Zhu and J.J. Zhang, Factorization and resummation of t-channel single top quark production, arXiv:1010.4509 [INSPIRE].
  53. [53]
    N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].ADSGoogle Scholar
  54. [54]
    N. Kidonakis, NNLL threshold resummation for top-pair and single-top production, Phys. Part. Nucl. 45 (2014) 714 [arXiv:1210.7813] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    N. Kidonakis, Single-top transverse-momentum distributions at approximate NNLO, Phys. Rev. D 93 (2016) 054022 [arXiv:1510.06361] [INSPIRE].ADSGoogle Scholar
  56. [56]
    Q.-H. Cao, P. Sun, B. Yan, C.P. Yuan and F. Yuan, Transverse momentum resummation for t-channel single top quark production at the LHC, Phys. Rev. D 98 (2018) 054032 [arXiv:1801.09656] [INSPIRE].ADSGoogle Scholar
  57. [57]
    Q.-H. Cao, P. Sun, B. Yan, C.P. Yuan and F. Yuan, Soft gluon resummation in t-channel single top quark production at the LHC, arXiv:1902.09336 [INSPIRE].
  58. [58]
    M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett. B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Assadsolimani, P. Kant, B. Tausk and P. Uwer, Calculation of two-loop QCD corrections for hadronic single top-quark production in the t-channel, Phys. Rev. D 90 (2014) 114024 [arXiv:1409.3654] [INSPIRE].ADSGoogle Scholar
  60. [60]
    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD corrections to t-channel single top-quark production and decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].ADSGoogle Scholar
  61. [61]
    E.L. Berger, J. Gao and H.X. Zhu, Differential distributions for t-channel single top-quark production and decay at next-to-next-to-leading order in QCD, JHEP 11 (2017) 158 [arXiv:1708.09405] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G.L. Kane, G.A. Ladinsky and C.P. Yuan, Using the top quark for testing Standard Model polarization and CP predictions, Phys. Rev. D 45 (1992) 124 [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    F. Bach and T. Ohl, Anomalous top couplings at hadron colliders revisited, Phys. Rev. D 86 (2012) 114026 [arXiv:1209.4564] [INSPIRE].ADSGoogle Scholar
  65. [65]
    E. Boos, L. Dudko and T. Ohl, Complete calculations of \( Wb\overline{b} \) and \( Wb\overline{b} \) + jet production at Tevatron and LHC: probing anomalous Wtb couplings in single top production, Eur. Phys. J. C 11 (1999) 473 [hep-ph/9903215] [INSPIRE].
  66. [66]
    E.E. Boos, V.E. Bunichev, L.V. Dudko, V.I. Savrin and A.V. Sherstnev, Method for simulating electroweak top-quark production events in the NLO approximation: singleTop event generator, Phys. Atom. Nucl. 69 (2006) 1317 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E. Boos, V. Bunichev, L. Dudko and M. Perfilov, Modeling of anomalous Wtb interactions in single top quark events using subsidiary fields, Int. J. Mod. Phys. A 32 (2016) 1750008 [arXiv:1607.00505] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Giammanco and R. Schwienhorst, Single top-quark production at the Tevatron and the LHC, Rev. Mod. Phys. 90 (2018) 035001 [arXiv:1710.10699] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    C. Degrande et al., Effective field theory: a modern approach to anomalous couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    D.R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC, Rev. Mod. Phys. 89 (2017) 035008 [arXiv:1610.07572] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  75. [75]
    R. Romero Aguilar, A.O. Bouzas and F. Larios, Limits on the anomalous Wtq couplings, Phys. Rev. D 92 (2015) 114009 [arXiv:1509.06431] [INSPIRE].ADSGoogle Scholar
  76. [76]
    J.A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings, Nucl. Phys. B 804 (2008) 160 [arXiv:0803.3810] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    Q.-H. Cao and J. Wudka, Search for new physics via single top production at TeV energy eγ colliders, Phys. Rev. D 74 (2006) 094015 [hep-ph/0608331] [INSPIRE].
  78. [78]
    Q.-H. Cao, J. Wudka and C.P. Yuan, Search for new physics via single top production at the LHC, Phys. Lett. B 658 (2007) 50 [arXiv:0704.2809] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Q.-H. Cao, B. Yan, J.-H. Yu and C. Zhang, A general analysis of Wtb anomalous couplings, Chin. Phys. C 41 (2017) 063101 [arXiv:1504.03785] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J.A. Aguilar-Saavedra, C. Degrande and S. Khatibi, Single top polarisation as a window to new physics, Phys. Lett. B 769 (2017) 498 [arXiv:1701.05900] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D. Barducci et al., Interpreting top-quark LHC measurements in the Standard-Model effective field theory, arXiv:1802.07237 [INSPIRE].
  82. [82]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
  83. [83]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [INSPIRE].ADSGoogle Scholar
  84. [84]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    G. Passarino and M. Trott, The Standard Model effective field theory and next to leading order, arXiv:1610.08356 [INSPIRE].
  88. [88]
    C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].ADSGoogle Scholar
  89. [89]
    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar
  90. [90]
    C. Zhang, Single top production at next-to-leading order in the Standard Model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Drobnak, S. Fajfer and J.F. Kamenik, New physics in tbW decay at next-to-leading order in QCD, Phys. Rev. D 82 (2010) 114008 [arXiv:1010.2402] [INSPIRE].ADSGoogle Scholar
  92. [92]
    M. de Beurs, E. Laenen, M. Vreeswijk and E. Vryonidou, Effective operators in t-channel single top production and decay, Eur. Phys. J. C 78 (2018) 919 [arXiv:1807.03576] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    Z. Sullivan, Fully differential Wproduction and decay at next-to-leading order in QCD, Phys. Rev. D 66 (2002) 075011 [hep-ph/0207290] [INSPIRE].
  94. [94]
    D. Duffty and Z. Sullivan, Model independent reach for Wbosons at the LHC, Phys. Rev. D 86 (2012) 075018 [arXiv:1208.4858] [INSPIRE].ADSGoogle Scholar
  95. [95]
    E. Drueke, J. Nutter, R. Schwienhorst, N. Vignaroli, D.G.E. Walker and J.-H. Yu, Single top production as a probe of heavy resonances, Phys. Rev. D 91 (2015) 054020 [arXiv:1409.7607] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  97. [97]
    I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  100. [100]
    Wolfram Research Inc., Mathematica, version 11.2, U.S.A. (2017).Google Scholar
  101. [101]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  102. [102]
    P. Maierhöfer, J. Usovitsch and P. Uwer, Kiraa Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Carrazza, R.K. Ellis and G. Zanderighi, QCDLoop: a comprehensive framework for one-loop scalar integrals, Comput. Phys. Commun. 209 (2016) 134 [arXiv:1605.03181] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  105. [105]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  106. [106]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  107. [107]
    M. Tentyukov and J. Fleischer, A Feynman diagram analyzer DIANA, Comput. Phys. Commun. 132 (2000) 124 [hep-ph/9904258] [INSPIRE].
  108. [108]
    A.V. Semenov, LanHEP: a package for automatic generation of Feynman rules in gauge models, hep-ph/9608488 [INSPIRE].
  109. [109]
    A.V. Semenov, LanHEP: a package for automatic generation of Feynman rules in field theory. Version 2.0, hep-ph/0208011 [INSPIRE].
  110. [110]
    A. Semenov, LanHEP: a package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [arXiv:0805.0555] [INSPIRE].
  111. [111]
    A. Semenov, LanHEP: a package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167 [arXiv:1412.5016] [INSPIRE].
  112. [112]
    A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for the Standard Model effective field theory in R ξ -gauges, JHEP 06 (2017) 143 [arXiv:1704.03888] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  113. [113]
    J.C. Romao and J.P. Silva, A resource for signs and Feynman diagrams of the Standard Model, Int. J. Mod. Phys. A 27 (2012) 1230025 [arXiv:1209.6213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  114. [114]
    D. Maître and P. Mastrolia, S@M, a Mathematica implementation of the spinor-helicity formalism, Comput. Phys. Commun. 179 (2008) 501 [arXiv:0710.5559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  115. [115]
    R.H. Lewis, Fermat, a computer algebra system for polynomial and matrix computation, http://home.bway.net/lewis/home.html.
  116. [116]
    M. Prausa, Mathematica interface to Fermat, https://github.com/mprausa/mmaFermat, (2017).
  117. [117]
    E. Byckling and K. Kajantie, Particle kinematics, University of Jyvaskyla, Jyvaskyla, Finland (1971).Google Scholar
  118. [118]
    P. Maierhöfer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE].
  119. [119]
    Y. Hida, X.S. Li and D.H. Bailey, Quad double computation package, (2003)-(2018).Google Scholar
  120. [120]
    T. Huber and D. Maître, HypExp: a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].
  121. [121]
    M. Jezabek and J.H. Kuhn, QCD corrections to semileptonic decays of heavy quarks, Nucl. Phys. B 314 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  123. [123]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. D 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].
  124. [124]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
  125. [125]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  126. [126]
    A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].
  127. [127]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  128. [128]
    J. Boudreau, C. Escobar, J. Mueller, K. Sapp and J. Su, Single top quark differential decay rate formulae including detector effects, arXiv:1304.5639 [INSPIRE].
  129. [129]
    S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    ATLAS collaboration, Search for anomalous couplings in the Wtb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector, JHEP 04 (2016) 023 [arXiv:1510.03764] [INSPIRE].
  131. [131]
    J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsIllinois Institute of TechnologyChicagoU.S.A.
  2. 2.FermilabBataviaU.S.A.

Personalised recommendations