Dilaton from tractor and matter field from twistor

  • J. FrançoisEmail author
Open Access
Regular Article - Theoretical Physics


Conformal tractors and twistors can be obtained via gauge reduction of the conformal Cartan geometry, thanks to the dressing field method. Perhaps surprisingly, it is possible to reduce the gauge symmetry further still. The Weyl symmetry can indeed be erased thanks to the tractor field, from which a dilaton is extracted. This suggests an alternative to the Weyl or conformal spontaneous symmetry breaking (SSB) that some authors proposed as improvement of the Standard Model or of inflationary cosmology, but also raises doubts as to the physical significance of such symmetries. Here, after gauge reduction via dressing, only the Lorentz gauge symmetry remains physically relevant, and the twistor field becomes — for all practical purposes — a Dirac spinor field. In a simple illustrative toy model, the latter acquires a mass through Lorentz SSB due to the VEV of the Weyl-invariant tractor field.


Conformal and W Symmetry Differential and Algebraic Geometry Gauge Symmetry Spontaneous Symmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Hinterbichler and J. Khoury, The Pseudo-Conformal Universe: Scale Invariance from Spontaneous Breaking of Conformal Symmetry, JCAP 04 (2012) 023 [arXiv:1106.1428] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    I. Bars, P. Steinhardt and N. Turok, Local Conformal Symmetry in Physics and Cosmology, Phys. Rev. D 89 (2014) 043515 [arXiv:1307.1848] [INSPIRE].
  3. [3]
    G. ’t Hooft, Local conformal symmetry in black holes, standard model and quantum gravity, Int. J. Mod. Phys. D 26 (2016) 1730006 [INSPIRE].
  4. [4]
    M. Atiyah, M. Dunajski and L. Mason, Twistor theory at fifty: from contour integrals to twistor strings, Proc. Roy. Soc. Lond. A 473 (2017) 20170530 [arXiv:1704.07464] [INSPIRE]. [].
  5. [5]
    S. Speziale, Loop quantum gravity, twistors and some perspectives on the problem of time, EPJ Web Conf. 71 (2014) 00123 [arXiv:1404.4167] [INSPIRE].
  6. [6]
    T. Bailey, M. Eastwood and A. Gover, Thomass structure bundle for conformal, projective and related structures, Rocky Mt. J. Math. 24 (1994) 1191.Google Scholar
  7. [7]
    A.R. Gover, A. Shaukat and A. Waldron, Tractors, Mass and Weyl Invariance, Nucl. Phys. B 812 (2009) 424 [arXiv:0810.2867] [INSPIRE].
  8. [8]
    R.W. Sharpe, Differential Geometry: Cartans Generalization of Kleins Erlangen Program, vol. 166 of Graduate text in Mathematics, Springer, (1996).Google Scholar
  9. [9]
    A. Cap and J. Slovak, Parabolic Geometries I: Background and General Theory, vol. 1 of Mathematical Surveys and Monographs, American Mathematical Society, (2009).Google Scholar
  10. [10]
    J. Attard and S. Lazzarini, A note on Weyl invariance in gravity and the Wess-Zumino functional, Nucl. Phys. B 912 (2016) 289 [arXiv:1607.06326] [INSPIRE].
  11. [11]
    R. Jackiw and S.-Y. Pi, Fake Conformal Symmetry in Conformal Cosmological Models, Phys. Rev. D 91 (2015) 067501 [arXiv:1407.8545] [INSPIRE].
  12. [12]
    J. Attard, J. François, S. Lazzarini and T. Masson, The dressing field method of gauge symmetry reduction, a review with examples, in Foundations of Mathematics and Physics one Century After Hilbert: New Perspectives, Springer, (2018), [arXiv:1702.02753] [INSPIRE].
  13. [13]
    J. François, Artificial vs Substantial Gauge Symmetries: a Criterion and an Application to the Electroweak Model, arXiv:1801.00678 [INSPIRE].
  14. [14]
    J. Attard and J. François, Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach I. Tractors, arXiv:1609.07307 [INSPIRE].
  15. [15]
    S.N. Curry and A.R. Gover, An Introduction to Conformal Geometry and Tractor Calculus, with a view to Applications in General Relativity, pp. 86-170, Lond. Math. Soc. Lect. Note Ser., Cambridge University Press, (2018).Google Scholar
  16. [16]
    R. Penrose and W. Rindler, Spinors and Space-Time, vol. 1., Cambridge University Press, (1984).Google Scholar
  17. [17]
    R. Penrose and W. Rindler, Spinors and Space-Time, vol. 2., Cambridge University Press, (1986).Google Scholar
  18. [18]
    J. Attard and J. François, Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach II. Twistors, Class. Quant. Grav. 34 (2017) 085004 [arXiv:1611.03891] [INSPIRE].
  19. [19]
    M.D. Pollock, On the Dirac equation in curved space-time, Acta Phys. Polon. B 41 (2010) 1827 [INSPIRE].
  20. [20]
    V. Bargmann, Bemerkungen zur allgemein-relativistischen fassung der quantentheorie, Sitzungsber. Preuss. Akad. Wiss. 1932 (1932), no. XXIV 346.Google Scholar
  21. [21]
    J. François, Reduction of gauge symmetries: a new geometrical approach, Thesis, Aix-Marseille Université, France, (2014).Google Scholar
  22. [22]
    J. Collins, A. Perez and D. Sudarsky, Lorentz invariance violation and its role in Quantum Gravity phenomenology, Cambridge University Press, (2009), pp. 528-547.Google Scholar
  23. [23]
    D. Colladay and V.A. Kostelecký, Lorentz violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [INSPIRE].
  24. [24]
    D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [INSPIRE].
  25. [25]
    O.W. Greenberg, CPT violation implies violation of Lorentz invariance, Phys. Rev. Lett. 89 (2002) 231602 [hep-ph/0201258] [INSPIRE].
  26. [26]
    O. Bertolami, D. Colladay, V.A. Kostelecký and R. Potting, CPT violation and baryogenesis, Phys. Lett. B 395 (1997) 178 [hep-ph/9612437] [INSPIRE].
  27. [27]
    S.M. Carroll and J. Shu, Models of baryogenesis via spontaneous Lorentz violation, Phys. Rev. D 73 (2006) 103515 [hep-ph/0510081] [INSPIRE].
  28. [28]
    M. Campigotto and L. Fatibene, Gauge natural formulation of conformal gravity, Annals Phys. 354 (2015) 328 [arXiv:1404.0898] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J.B. Pitts, General Covariance, Artificial Gauge Freedom and Empirical Equivalence. Ph.D. Thesis, Graduate School of the University of Notre Dame, France, (2008).Google Scholar
  30. [30]
    J.B. Pitts, Empirical Equivalence, Artificial Gauge Freedom and a Generalized Kretschmann Objection, arXiv:0911.5400 [INSPIRE].
  31. [31]
    M.P. Hertzberg, Inflation, Symmetry and B-Modes, Phys. Lett. B 745 (2015) 118 [arXiv:1403.5253] [INSPIRE].
  32. [32]
    G. ’t Hooft, Local conformal symmetry: The missing symmetry component for space and time, Int. J. Mod. Phys. D 24 (2015) 1543001 [INSPIRE].
  33. [33]
    W. Pauli, Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten. Teil II: Die Diracschen Gleichungen für die Materiewellen, Annalen Phys. 18 (1933) 337.ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    R.U. Sexl and H.K. Urbantke, Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics, Springer-Verlag Wien, (2001).Google Scholar
  35. [35]
    M. Arminjon and F. Reifler, Basic quantum mechanics for three Dirac equations in a curved spacetime, Braz. J. Phys. 40 (2010) 242.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Service de Physique de l’Univers, Champs et GravitationUniversité de Mons — UMONSMonsBelgium

Personalised recommendations