Gluon helicity flip in a plane wave background

  • Tim AdamoEmail author
  • Anton Ilderton
Open Access
Regular Article - Theoretical Physics


We compute the leading probability for a gluon to flip helicity state upon traversing a background plane wave gauge field in pure Yang-Mills theory and QCD, with an arbitrary number of colours and flavours. This is a one-loop calculation in perturbative gauge theory around the gluonic plane wave background, which is treated without approximation (i.e., to all orders in the coupling). We introduce a background-dressed version of the spinor helicity formalism and use it to obtain simple formulae for the flip amplitude with pure external gluon polarizations. We also give in-depth examples for gauge group SU(2), and evaluate both the high- and low-energy limits. Throughout, we compare and contrast with the calculation of photon helicity flip in strong-field QED.


Perturbative QCD Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Dobrich and H. Gies, Axion-like-particle search with high-intensity lasers, JHEP 10 (2010) 022 [arXiv:1006.5579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Redondo and A. Ringwald, Light shining through walls, Contemp. Phys. 52 (2011) 211 [arXiv:1011.3741] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.V. Dunne, New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production, Eur. Phys. J. D 55 (2009) 327 [arXiv:0812.3163] [INSPIRE].ADSGoogle Scholar
  5. [5]
    B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev. 162 (1967) 1195 [INSPIRE].
  6. [6]
    G. ’t Hooft, The Background Field Method in Gauge Field Theories, in Functional and Probabilistic Methods in Quantum Field Theory. 1, in Proceedings, 12th Winter School of Theoretical Physics, Karpacz, February 17–March 2, 1975, pp. 345-369 (1975) [INSPIRE].
  7. [7]
    D.G. Boulware, Gauge Dependence of the Effective Action, Phys. Rev. D 23 (1981) 389 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    W.H. Furry, On Bound States and Scattering in Positron Theory, Phys. Rev. 81 (1951) 115 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D.M. Wolkow, Uber eine Klasse von Losungen der Diracschen Gleichung, Z. Phys. 94 (1935) 250 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Seipt, Volkov States and Non-linear Compton Scattering in Short and Intense Laser Pulses, in Proceedings, Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (HQ 2016), Dubna, Russia, July 18–30, 2016, pp. 24–43 (2017) [] [arXiv:1701.03692] [INSPIRE].
  12. [12]
    V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, J. Russ. Laser Res. 6 (1985) 497.CrossRefGoogle Scholar
  13. [13]
    A. Di Piazza, C. Muller, K.Z. Hatsagortsyan and C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177 [arXiv:1111.3886] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. King and T. Heinzl, Measuring Vacuum Polarisation with High Power Lasers, arXiv:1510.08456 [INSPIRE].
  15. [15]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Plane wave backgrounds and colour-kinematics duality, JHEP 02 (2019) 198 [arXiv:1810.05115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Basler and A. Hadicke, ON nonabelian SU(2) plane waves, Phys. Lett. 144B (1984) 83 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double copy, Class. Quant. Grav. 35 (2018) 015004 [arXiv:1706.08925] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Srednicki, Quantum field theory, Cambridge University Press (2007) [INSPIRE].
  19. [19]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  20. [20]
    L.J. Dixon, A brief introduction to modern amplitude methods, in Proceedings, 2012 European School of High-Energy Physics (ESHEP 2012), La Pommeraye, Anjou, France, June 06–19, 2012, pp. 31–67 (2014) [] [arXiv:1310.5353] [INSPIRE].
  21. [21]
    C. Cheung, TASI Lectures on Scattering Amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016), Boulder, CO, U.S.A., June 6–July 1, 2016, pp. 571–623 (2018) [] [arXiv:1708.03872] [INSPIRE].
  22. [22]
    J.S. Toll, The Dispersion relation for light and its application to problems involving electron pairs, Ph.D. Thesis, Princeton U. (1952) [INSPIRE].
  23. [23]
    N.B. Narozhny, Propagation of plane electomagnetic waves in a constant field, JETP 28 (1969) 371.ADSGoogle Scholar
  24. [24]
    V.I. Ritus, Radiative corrections in quantum electrodynamics with intense field and their analytical properties, Annals Phys. 69 (1972) 555 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G.M. Shore, Superluminality and UV completion, Nucl. Phys. B 778 (2007) 219 [hep-th/0701185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    W. Becker and H. Mitter, Vacuum polarization in laser fields, J. Phys. A 8 (1975) 1638 [INSPIRE].ADSGoogle Scholar
  27. [27]
    V.N. Baier, A.I. Milshtein and V.M. Strakhovenko, Interaction Between a Photon and a High Intensity Electromagnetic Wave, Zh. Eksp. Teor. Fiz. 69 (1975) 1893 [INSPIRE].Google Scholar
  28. [28]
    E. Iancu, A. Leonidov and L. McLerran, The Color glass condensate: An Introduction, in QCD perspectives on hot and dense matter. Proceedings, NATO Advanced Study Institute, Summer School, Cargese, France, August 6–18, 2001, pp. 73–145 (2002) [hep-ph/0202270] [INSPIRE].
  29. [29]
    E. Iancu and R. Venugopalan, The Color glass condensate and high-energy scattering in QCD, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., pp. 249–3363 (2003) [] [hep-ph/0303204] [INSPIRE].
  30. [30]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, vol. 33, Cambridge University Press (2012) [INSPIRE].
  32. [32]
    J.-P. Blaizot, High gluon densities in heavy ion collisions, Rept. Prog. Phys. 80 (2017) 032301 [arXiv:1607.04448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    V. Dinu, T. Heinzl, A. Ilderton, M. Marklund and G. Torgrimsson, Vacuum refractive indices and helicity flip in strong-field QED, Phys. Rev. D 89 (2014) 125003 [arXiv:1312.6419] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de poincaré, Ann. Inst. H. Poincare Phys. Theor. 3 (1965) 1.zbMATHGoogle Scholar
  35. [35]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll symmetry of plane gravitational waves, Class. Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S.R. Coleman, Nonabelian Plane Waves, Phys. Lett. 70B (1977) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Kovacs and S.-y. Lo, Selfdual Propagating Wave Solutions in Yang-Mills Gauge Theory, Phys. Rev. D 19 (1979) 3649 [INSPIRE].ADSGoogle Scholar
  38. [38]
    S.-Y. Lo, P. Desmond and E. Kovacs, General selfdual nonabelian plane waves, Phys. Lett. 90B (1980) 419 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Trautman, A class of null solutions to Yang-Mills equations, J. Phys. A 13 (1980) L1 [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Heinzl and A. Ilderton, Superintegrable relativistic systems in spacetime-dependent background fields, J. Phys. A 50 (2017) 345204 [arXiv:1701.09168] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  42. [42]
    G.W. Gibbons, Quantized Fields Propagating in Plane Wave Space-Times, Commun. Math. Phys. 45 (1975) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Deser, Plane waves do not polarize the vacuum, J. Phys. A 8 (1975) 1972 [INSPIRE].ADSGoogle Scholar
  44. [44]
    V. Dinu, T. Heinzl and A. Ilderton, Infra-Red Divergences in Plane Wave Backgrounds, Phys. Rev. D 86 (2012) 085037 [arXiv:1206.3957] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Ilderton and G. Torgrimsson, Scattering in plane-wave backgrounds: infra-red effects and pole structure, Phys. Rev. D 87 (2013) 085040 [arXiv:1210.6840] [INSPIRE].ADSGoogle Scholar
  46. [46]
    T. Heinzl, A. Ilderton and M. Marklund, Laser intensity effects in noncommutative QED, Phys. Rev. D 81 (2010) 051902 [arXiv:0909.0656] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Villalba-Chavez and C. Muller, Photo-production of scalar particles in the field of a circularly polarized laser beam, Phys. Lett. B 718 (2013) 992 [arXiv:1208.3595] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    B.M. Dillon and B. King, ALP production through non-linear Compton scattering in intense fields, Eur. Phys. J. C 78 (2018) 775 [arXiv:1802.07498] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    B. King, Electron-seeded ALP production and ALP decay in an oscillating electromagnetic field, Phys. Lett. B 782 (2018) 737 [arXiv:1802.07507] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Meuren, C.H. Keitel and A. Di Piazza, Nonlinear neutrino-photon interactions inside strong laser pulses, JHEP 06 (2015) 127 [arXiv:1504.02722] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R. Sauerbrey and A. Wipf, On the observation of vacuum birefringence, Opt. Commun. 267 (2006) 318 [hep-ph/0601076] [INSPIRE].
  52. [52]
    F. Karbstein, H. Gies, M. Reuter and M. Zepf, Vacuum birefringence in strong inhomogeneous electromagnetic fields, Phys. Rev. D 92 (2015) 071301 [arXiv:1507.01084] [INSPIRE].ADSGoogle Scholar
  53. [53]
    H.-P. Schlenvoigt, T. Heinzl, U. Schramm, T.E. Cowan and R. Sauerbrey, Detecting vacuum birefringence with x-ray free electron lasers and high-power optical lasers: a feasibility study, Phys. Scripta 91 (2016) 023010.ADSCrossRefGoogle Scholar
  54. [54]
    Y.V. Kovchegov and M.D. Sievert, Small-x Helicity Evolution: an Operator Treatment, Phys. Rev. D 99 (2019) 054032 [arXiv:1808.09010] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Y.V. Kovchegov and M.D. Sievert, Valence Quark Transversity at Small x, Phys. Rev. D 99 (2019) 054033 [arXiv:1808.10354] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D. Mustaki, S. Pinsky, J. Shigemitsu and K. Wilson, Perturbative renormalization of null plane QED, Phys. Rev. D 43 (1991) 3411 [INSPIRE].ADSGoogle Scholar
  57. [57]
    N.C.J. Schoonderwoerd and B.L.G. Bakker, Equivalence of renormalized covariant and light front perturbation theory. 1. Longitudinal divergences in the Yukawa model, Phys. Rev. D 57 (1998) 4965 [INSPIRE].
  58. [58]
    P.P. Srivastava and S.J. Brodsky, Light front quantized QCD in light cone gauge, Phys. Rev. D 64 (2001) 045006 [hep-ph/0011372] [INSPIRE].
  59. [59]
    L. Mantovani, B. Pasquini, X. Xiong and A. Bacchetta, Revisiting the equivalence of light-front and covariant QED in the light-cone gauge, Phys. Rev. D 94 (2016) 116005 [arXiv:1609.00746] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].
  61. [61]
    T. Heinzl, Light cone quantization: Foundations and applications, Lect. Notes Phys. 572 (2001) 55 [hep-th/0008096] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    T. Heinzl, Light cone zero modes revisited, in Light cone physics: Hadrons and beyond: Proceedings. 2003, 2003, hep-th/0310165 [INSPIRE].
  63. [63]
    A. Casher, Gauge Fields on the Null Plane, Phys. Rev. D 14 (1976) 452 [INSPIRE].ADSGoogle Scholar
  64. [64]
    W. Dittrich and H. Gies, Probing the quantum vacuum. Perturbative effective action approach in quantum electrodynamics and its application, Springer Tracts Mod. Phys. 166 (2000) 1.Google Scholar
  65. [65]
    T. Adamo, Lectures on twistor theory, PoS(Modave2017)003 (2018) [arXiv:1712.02196] [INSPIRE].
  66. [66]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    T.W.B. Kibble, Frequency Shift in High-Intensity Compton Scattering, Phys. Rev. 138 (1965) B740 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    T.W.B. Kibble, A. Salam and J.A. Strathdee, Intensity Dependent Mass Shift and Symmetry Breaking, Nucl. Phys. B 96 (1975) 255 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    F. Hebenstreit, A. Ilderton, M. Marklund and J. Zamanian, Strong field effects in laser pulses: the Wigner formalism, Phys. Rev. D 83 (2011) 065007 [arXiv:1011.1923] [INSPIRE].ADSGoogle Scholar
  70. [70]
    C. Harvey, T. Heinzl, A. Ilderton and M. Marklund, Intensity-Dependent Electron Mass Shift in a Laser Field: Existence, Universality and Detection, Phys. Rev. Lett. 109 (2012) 100402 [arXiv:1203.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    V. Dinu, Exact final state integrals for strong field QED, Phys. Rev. A 87 (2013) 052101 [arXiv:1302.1513] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    T. Heinzl, A. Ilderton and M. Marklund, Finite size effects in stimulated laser pair production, Phys. Lett. B 692 (2010) 250 [arXiv:1002.4018] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    T. Podszus and A. Di Piazza, High-energy behavior of strong-field QED in an intense plane wave, Phys. Rev. D 99 (2019) 076004 [arXiv:1812.08673] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Ilderton, Note on the conjectured breakdown of QED perturbation theory in strong fields, Phys. Rev. D 99 (2019) 085002 [arXiv:1901.00317] [INSPIRE].ADSGoogle Scholar
  75. [75]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  77. [77]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].ADSGoogle Scholar
  79. [79]
    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet Properties of N = 4 Supergravity at Four Loops, Phys. Rev. Lett. 111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N} \) = 5 supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].ADSGoogle Scholar
  81. [81]
    Z. Bern, J.J.M. Carrasco, W.-M. Chen, H. Johansson, R. Roiban and M. Zeng, Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev. D 96 (2017) 126012 [arXiv:1708.06807] [INSPIRE].ADSMathSciNetGoogle Scholar
  82. [82]
    Z. Bern et al., Ultraviolet Properties of \( \mathcal{N} \) = 8 Supergravity at Five Loops, Phys. Rev. D 98 (2018) 086021 [arXiv:1804.09311] [INSPIRE].ADSGoogle Scholar
  83. [83]
    W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].ADSMathSciNetGoogle Scholar
  84. [84]
    A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP 03 (2018) 044 [arXiv:1711.03901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].ADSMathSciNetGoogle Scholar
  86. [86]
    C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, JHEP 11 (2018) 162 [arXiv:1806.07388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    C. Cheung, I.Z. Rothstein and M.P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett. 121 (2018) 251101 [arXiv:1808.02489] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order, Phys. Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].CrossRefGoogle Scholar
  89. [89]
    N. Bahjat-Abbas, A. Luna and C.D. White, The Kerr-Schild double copy in curved spacetime, JHEP 12 (2017) 004 [arXiv:1710.01953] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics Group, Blackett LaboratoryImperial College LondonLondonUnited Kingdom
  2. 2.Centre for Mathematical SciencesUniversity of PlymouthPlymouthUnited Kingdom

Personalised recommendations