Advertisement

Probing dark matter particles at CEPC

  • Zuowei LiuEmail author
  • Yong-Heng Xu
  • Yu Zhang
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We investigate the capability of the future electron collider CEPC in probing the parameter space of several dark matter models, including millicharged dark matter models, Z portal dark matter models, and effective dark matter operators. In our analysis, the monophoton final state is used as the primary channel to detect dark matter models at CEPC. To maximize the signal to background significance, we study the energy and angular distributions of the monophoton channel arising from dark matter models and from the standard model to design a set of detector cuts. For the Z portal dark matter, we also analyze the Z boson visible decay channel which is found to be complementary to the monophoton channel in certain parameter space. The CEPC reach in the parameter space of dark matter models is also put in comparison with Xenon1T. We find that CEPC has the unprecedented sensitivity to certain parameter space for the dark matter models considered; for example, CEPC can improve the limits on millicharge by one order of magnitude than previous collider experiments for \( \mathcal{O}(1)-100 \) GeV dark matter.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, arXiv:1807.06205 [INSPIRE].
  2. [2]
    CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE].
  3. [3]
    H. Baer et al., The International Linear Collider technical design reportvolume 2: physics, arXiv:1306.6352 [INSPIRE].
  4. [4]
    TLEP Design Study Working Group collaboration, First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  5. [5]
    CLIC Detector and Physics Study collaboration, Physics at the CLIC e + e linear colliderinput to the Snowmass process 2013, in Proceedings, 2013 community summer study on the future of U.S. particle physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July-6 August 2013 [arXiv:1307.5288] [INSPIRE].
  6. [6]
    A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: a model independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [INSPIRE].
  7. [7]
    P. Konar, K. Kong, K.T. Matchev and M. Perelstein, Shedding light on the dark sector with direct WIMP production, New J. Phys. 11 (2009) 105004 [arXiv:0902.2000] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].
  9. [9]
    C. Bartels, M. Berggren and J. List, Characterising WIMPs at a future e + e linear collider, Eur. Phys. J. C 72 (2012) 2213 [arXiv:1206.6639] [INSPIRE].
  10. [10]
    Y.J. Chae and M. Perelstein, Dark matter search at a linear collider: effective operator approach, JHEP 05 (2013) 138 [arXiv:1211.4008] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    H. Dreiner, M. Huck, M. Krämer, D. Schmeier and J. Tattersall, Illuminating dark matter at the ILC, Phys. Rev. D 87 (2013) 075015 [arXiv:1211.2254] [INSPIRE].
  12. [12]
    Z.-H. Yu, Q.-S. Yan and P.-F. Yin, Detecting interactions between dark matter and photons at high energy e + e colliders, Phys. Rev. D 88 (2013) 075015 [arXiv:1307.5740] [INSPIRE].
  13. [13]
    Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Dark matter searches in the mono-Z channel at high energy e + e colliders, Phys. Rev. D 90 (2014) 055010 [arXiv:1404.6990] [INSPIRE].
  14. [14]
    N. Wan, M. Song, G. Li, W.-G. Ma, R.-Y. Zhang and J.-Y. Guo, Searching for dark matter via mono-Z boson production at the ILC, Eur. Phys. J. C 74 (2014) 3219 [arXiv:1403.7921] [INSPIRE].
  15. [15]
    M. Karliner, M. Low, J.L. Rosner and L.-T. Wang, Radiative return capabilities of a high-energy, high-luminosity e + e collider, Phys. Rev. D 92 (2015) 035010 [arXiv:1503.07209] [INSPIRE].
  16. [16]
    K. Harigaya, K. Ichikawa, A. Kundu, S. Matsumoto and S. Shirai, Indirect probe of electroweak-interacting particles at future lepton colliders, JHEP 09 (2015) 105 [arXiv:1504.03402] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Q.-H. Cao, Y. Li, B. Yan, Y. Zhang and Z. Zhang, Probing dark particles indirectly at the CEPC, Nucl. Phys. B 909 (2016) 197 [arXiv:1604.07536] [INSPIRE].
  18. [18]
    Q.-F. Xiang, X.-J. Bi, Q.-S. Yan, P.-F. Yin and Z.-H. Yu, Measuring masses in semi-invisible final states at electron-positron colliders, Phys. Rev. D 95 (2017) 075037 [arXiv:1610.03372] [INSPIRE].
  19. [19]
    C. Cai, Z.-H. Yu and H.-H. Zhang, CEPC precision of electroweak oblique parameters and weakly interacting dark matter: the fermionic case, Nucl. Phys. B 921 (2017) 181 [arXiv:1611.02186] [INSPIRE].
  20. [20]
    C. Cai, Z.-H. Yu and H.-H. Zhang, CEPC precision of electroweak oblique parameters and weakly interacting dark matter: the scalar case, Nucl. Phys. B 924 (2017) 128 [arXiv:1705.07921] [INSPIRE].
  21. [21]
    Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Exploring fermionic dark matter via Higgs boson precision measurements at the circular electron positron collider, Phys. Rev. D 97 (2018) 055004 [arXiv:1707.03094] [INSPIRE].
  22. [22]
    J.-W. Wang, X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders, Phys. Rev. D 97 (2018) 035021 [arXiv:1711.05622] [INSPIRE].
  23. [23]
    M. He, X.-G. He and C.-K. Huang, Dark photon search at a circular e + e collider, Int. J. Mod. Phys. A 32 (2017) 1750138 [arXiv:1701.08614] [INSPIRE].
  24. [24]
    M. He, X.-G. He, C.-K. Huang and G. Li, Search for a heavy dark photon at future e + e colliders, JHEP 03 (2018) 139 [arXiv:1712.09095] [INSPIRE].
  25. [25]
    J. Liu, L.-T. Wang, X.-P. Wang and W. Xue, Exposing the dark sector with future Z factories, Phys. Rev. D 97 (2018) 095044 [arXiv:1712.07237] [INSPIRE].
  26. [26]
    M. Jin and Y. Gao, Z-pole test of effective dark matter diboson interactions at the CEPC, Eur. Phys. J. C 78 (2018) 622 [arXiv:1712.02140] [INSPIRE].
  27. [27]
    K. Kadota and A. Spray, Electroweak multiplet dark matter at future lepton colliders, JHEP 02 (2019) 017 [arXiv:1811.00560] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    Z. Liu and Y. Zhang, Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99 (2019) 015004 [arXiv:1808.00983] [INSPIRE].
  29. [29]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  30. [30]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  31. [31]
    S. Wang, Study on the performance of simulated CEPC high granularity electromagnetic calorimeter-energy, position resolution and linear range, master thesis, (2017).Google Scholar
  32. [32]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  33. [33]
    D.E. Soper, M. Spannowsky, C.J. Wallace and T.M.P. Tait, Scattering of dark particles with light mediators, Phys. Rev. D 90 (2014) 115005 [arXiv:1407.2623] [INSPIRE].
  34. [34]
    G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122 (2019) 071801 [arXiv:1806.03310] [INSPIRE].
  35. [35]
    S.D. McDermott, H.-B. Yu and K.M. Zurek, Turning off the lights: how dark is dark matter?, Phys. Rev. D 83 (2011) 063509 [arXiv:1011.2907] [INSPIRE].
  36. [36]
    S.L. Dubovsky, D.S. Gorbunov and G.I. Rubtsov, Narrowing the window for millicharged particles by CMB anisotropy, JETP Lett. 79 (2004) 1 [Pisma Zh. Eksp. Teor. Fiz. 79 (2004) 3] [hep-ph/0311189] [INSPIRE].
  37. [37]
    J.M. Cline, Z. Liu and W. Xue, Millicharged atomic dark matter, Phys. Rev. D 85 (2012) 101302 [arXiv:1201.4858] [INSPIRE].
  38. [38]
    A.D. Dolgov, S.L. Dubovsky, G.I. Rubtsov and I.I. Tkachev, Constraints on millicharged particles from Planck data, Phys. Rev. D 88 (2013) 117701 [arXiv:1310.2376] [INSPIRE].
  39. [39]
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].
  40. [40]
    J.B. Muñoz and A. Loeb, A small amount of mini-charged dark matter could cool the baryons in the early universe, Nature 557 (2018) 684 [arXiv:1802.10094] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    A. Berlin, D. Hooper, G. Krnjaic and S.D. McDermott, Severely constraining dark matter interpretations of the 21 cm anomaly, Phys. Rev. Lett. 121 (2018) 011102 [arXiv:1803.02804] [INSPIRE].
  42. [42]
    R. Barkana, N.J. Outmezguine, D. Redigolo and T. Volansky, Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98 (2018) 103005 [arXiv:1803.03091] [INSPIRE].
  43. [43]
    T.R. Slatyer and C.-L. Wu, Early-universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal, Phys. Rev. D 98 (2018) 023013 [arXiv:1803.09734] [INSPIRE].
  44. [44]
    E.D. Kovetz, V. Poulin, V. Gluscevic, K.K. Boddy, R. Barkana and M. Kamionkowski, Tighter limits on dark matter explanations of the anomalous EDGES 21 cm signal, Phys. Rev. D 98 (2018) 103529 [arXiv:1807.11482] [INSPIRE].
  45. [45]
    K.K. Boddy, V. Gluscevic, V. Poulin, E.D. Kovetz, M. Kamionkowski and R. Barkana, Critical assessment of CMB limits on dark matter-baryon scattering: new treatment of the relative bulk velocity, Phys. Rev. D 98 (2018) 123506 [arXiv:1808.00001] [INSPIRE].
  46. [46]
    D. Wadekar and G.R. Farrar, First direct astrophysical constraints on dark matter interactions with ordinary matter at very low velocities, arXiv:1903.12190 [INSPIRE].
  47. [47]
    R. de Putter, O. Doré, J. Gleyzes, D. Green and J. Meyers, Dark matter interactions, helium and the cosmic microwave background, Phys. Rev. Lett. 122 (2019) 041301 [arXiv:1805.11616] [INSPIRE].
  48. [48]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  49. [49]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  50. [50]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  51. [51]
    XENON collaboration, Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett. 122 (2019) 141301 [arXiv:1902.03234] [INSPIRE].
  52. [52]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  53. [53]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina
  3. 3.CAS Center for Excellence in Particle PhysicsBeijingChina
  4. 4.Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina

Personalised recommendations