Advertisement

Symmetric superfluids

  • Enrico Pajer
  • David StefanyszynEmail author
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We present a complete classification of symmetric superfluids, namely shift-symmetric and Poincaré invariant scalar field theories that have an enlarged set of classically conserved currents at leading order in derivatives. These theories arise in the decoupling limit of the effective field theory of shift-symmetric, single-clock cosmologies and our results pick out all models with couplings fixed by additional symmetry. Remarkably, in D ≥ 2 spacetime dimensions there are only two possibilities: the Dirac-Born-Infeld theory and Scaling Superfluids with Lagrangian (−∂μϕμϕ)α, for some real α. The scaling symmetry present for any α is further enhanced to the full conformal group only for α = D/2, and to infinitely many additional generators for the cuscuton, namely α = 1/2. We discuss the stability of Scaling Superfluids and point out that all coupling constants are determined by the speed of sound.

Keywords

Effective Field Theories Global Symmetries Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].
  3. [3]
    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [INSPIRE].
  4. [4]
    A. Esposito, S. Garcia-Saenz and R. Penco, First sound in holographic superfluids at zero temperature, JHEP 12 (2016) 136 [arXiv:1606.03104] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Afshordi, D.J.H. Chung and G. Geshnizjani, Cuscuton: A Causal Field Theory with an Infinite Speed of Sound, Phys. Rev. D 75 (2007) 083513 [hep-th/0609150] [INSPIRE].
  6. [6]
    N. Afshordi, D.J.H. Chung, M. Doran and G. Geshnizjani, Cuscuton Cosmology: Dark Energy meets Modified Gravity, Phys. Rev. D 75 (2007) 123509 [astro-ph/0702002] [INSPIRE].
  7. [7]
    C.P. Burgess and M. Williams, Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs, JHEP 08 (2014) 074 [arXiv:1404.2236] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    Y. Nakayama, Scale invariance vs conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Polchinski, Scale and Conformal Invariance in Quantum Field Theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].
  10. [10]
    D. Dorigoni and V.S. Rychkov, Scale Invariance + Unitarity => Conformal Invariance?, arXiv:0910.1087 [INSPIRE].
  11. [11]
    R. Jackiw and S.Y. Pi, Tutorial on Scale and Conformal Symmetries in Diverse Dimensions, J. Phys. A 44 (2011) 223001 [arXiv:1101.4886] [INSPIRE].
  12. [12]
    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the Asymptotics of 4D Quantum Field Theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].
  13. [13]
    J.-F. Fortin, B. Grinstein and A. Stergiou, Limit Cycles and Conformal Invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Dymarsky, Z. Komargodski, A. Schwimmer and S. Theisen, On Scale and Conformal Invariance in Four Dimensions, JHEP 10 (2015) 171 [arXiv:1309.2921] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    I. Low, Adlers zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].
  17. [17]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Roest, D. Stefanyszyn and P. Werkman, An Algebraic Classification of Exceptional EFTs, arXiv:1903.08222 [INSPIRE].
  22. [22]
    D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
  23. [23]
    M. Greiter, F. Wilczek and E. Witten, Hydrodynamic Relations in Superconductivity, Mod. Phys. Lett. B 3 (1989) 903 [INSPIRE].
  24. [24]
    A. Nicolis, Low-energy effective field theory for finite-temperature relativistic superfluids, arXiv:1108.2513 [INSPIRE].
  25. [25]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  26. [26]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  27. [27]
    D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3 [INSPIRE].
  28. [28]
    A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
  30. [30]
    E.A. Ivanov and V.I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstones theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].
  32. [32]
    P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Heidelberg Germany (1986).Google Scholar
  33. [33]
    K. Hinterbichler and A. Joyce, Goldstones with Extended Shift Symmetries, Int. J. Mod. Phys. D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].
  34. [34]
    R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev. D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].
  35. [35]
    J. Chagoya and G. Tasinato, A geometrical approach to degenerate scalar-tensor theories, JHEP 02 (2017) 113 [arXiv:1610.07980] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  37. [37]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].
  40. [40]
    P. Creminelli, R. Emami, M. Simonović and G. Trevisan, ISO(4,1) Symmetry in the EFT of Inflation, JCAP 07 (2013) 037 [arXiv:1304.4238] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  42. [42]
    A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    G. Cuomo, A. de la Fuente, A. Monin, D. Pirtskhalava and R. Rattazzi, Rotating superfluids and spinning charged operators in conformal field theory, Phys. Rev. D 97 (2018) 045012 [arXiv:1711.02108] [INSPIRE].
  44. [44]
    A. Esposito, S. Garcia-Saenz and R. Penco, First sound in holographic superfluids at zero temperature, JHEP 12 (2016) 136 [arXiv:1606.03104] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    R. Sundrum, Gravitys scalar cousin, hep-th/0312212 [INSPIRE].
  46. [46]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
  47. [47]
    R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to String theory, emphLect. Notes Phys. 779 (2009) 1.Google Scholar
  48. [48]
    B. Finelli, G. Goon, E. Pajer and L. Santoni, The Effective Theory of Shift-Symmetric Cosmologies, JCAP 05 (2018) 060 [arXiv:1802.01580] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  49. [49]
    A. Nicolis and F. Piazza, Spontaneous Symmetry Probing, JHEP 06 (2012) 025 [arXiv:1112.5174] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    B. Finelli, unpublished.Google Scholar
  51. [51]
    S.R. Coleman and R. Jackiw, Why dilatation generators do not generate dilatations?, Annals Phys. 67 (1971) 552 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  52. [52]
    C.G. Callan Jr., S.R. Coleman and R. Jackiw, A New improved energymomentum tensor, Annals Phys. 59 (1970) 42 [INSPIRE].
  53. [53]
    S. Garcia-Saenz and S. Renaux-Petel, Flattened non-Gaussianities from the effective field theory of inflation with imaginary speed of sound, JCAP 11 (2018) 005 [arXiv:1805.12563] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    D. Baumann, D. Green, H. Lee and R.A. Porto, Signs of Analyticity in Single-Field Inflation, Phys. Rev. D 93 (2016) 023523 [arXiv:1502.07304] [INSPIRE].
  55. [55]
    A. Nicolis, R. Rattazzi and E. Trincherini, Energys and amplitudespositivity, JHEP 05 (2010) 095 [Erratum ibid. 1111 (2011) 128] [arXiv:0912.4258] [INSPIRE].
  56. [56]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  57. [57]
    J. Polchinski, Effective field theory and the Fermi surface, in Proceedings of Recent directions in particle theory, Boulder U.S.A. (1992), pg. 235, [NSF-ITP-92-132] [hep-th/9210046].
  58. [58]
    N. Kaloper, A. Padilla, P. Saffin and D. Stefanyszyn, Unitarity and the Vainshtein Mechanism, Phys. Rev. D 91 (2015) 045017 [arXiv:1409.3243] [INSPIRE].
  59. [59]
    R. Klein, D. Roest and D. Stefanyszyn, Spontaneously Broken Spacetime Symmetries and the Role of Inessential Goldstones, JHEP 10 (2017) 051 [arXiv:1709.03525] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino Terms for Relativistic Fluids, Superfluids, Solids and Supersolids, Phys. Rev. Lett. 114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].
  61. [61]
    L. Bordin, P. Creminelli, A. Khmelnitsky and L. Senatore, Light Particles with Spin in Inflation, JCAP 10 (2018) 013 [arXiv:1806.10587] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  62. [62]
    J.-P. Bruneton and G. Esposito-Farese, Field-theoretical formulations of MOND-like gravity, Phys. Rev. D 76 (2007) 124012 [Erratum ibid. D 76 (2007) 129902] [arXiv:0705.4043] [INSPIRE].
  63. [63]
    L. Berezhiani and J. Khoury, Theory of dark matter superfluidity, Phys. Rev. D 92 (2015) 103510 [arXiv:1507.01019] [INSPIRE].
  64. [64]
    J. Khoury, J. Sakstein and A.R. Solomon, Superfluids and the Cosmological Constant Problem, JCAP 08 (2018) 024 [arXiv:1805.05937] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  65. [65]
    G.M. Ferreira, Elisa, G. Franzmann, J. Khoury and R. Brandenberger, Unified Superfluid Dark Sector, arXiv:1810.09474 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.
  2. 2.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands

Personalised recommendations