Advertisement

Semi-inclusive deep-inelastic scattering in Wandzura-Wilczek-type approximation

  • S. Bastami
  • H. Avakian
  • A. V. Efremov
  • A. Kotzinian
  • B. U. Musch
  • B. Parsamyan
  • A. ProkudinEmail author
  • M. Schlegel
  • G. Schnell
  • P. Schweitzer
  • K. Tezgin
Open Access
Regular Article - Theoretical Physics

Abstract

We present the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed \( \mathcal{O}\left(1/{Q}^2\right) \) terms in the Wandzura-Wilczek-type approximation, which consists in systematically assuming that \( \overline{q}gq \)-terms are much smaller than \( \overline{q}q \)-correlators. We compute all twist-2 and twist-3 structure functions and the corresponding asymmetries, and discuss the applicability of the Wandzura-Wilczek-type approximations on the basis of available data. We make predictions that can be tested by data from COMPASS, HERMES, Jefferson Lab, and the future Electron-Ion Collider. The results of this paper can be readily used for phenomenology and for event generators, and will help to improve the description of semi-inclusive deep-inelastic processes in terms of transverse momentum dependent parton distribution functions and fragmentation functions beyond the leading twist.

Keywords

Deep Inelastic Scattering (Phenomenology) QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Kotzinian, New quark distributions and semiinclusive electroproduction on the polarized nucleons, Nucl. Phys. B 441 (1995) 234 [hep-ph/9412283] [INSPIRE].
  2. [2]
    P.J. Mulders and R.D. Tangerman, The complete tree-level result up to order 1/Q for polarized deep-inelastic leptoproduction, Nucl. Phys. B 461 (1996) 197 [Erratum ibid. B 484 (1997) 538] [hep-ph/9510301] [INSPIRE].
  3. [3]
    D. Boer and P.J. Mulders, Time-reversal odd distribution functions in leptoproduction, Phys. Rev. D 57 (1998) 5780 [hep-ph/9711485] [INSPIRE].
  4. [4]
    K. Goeke, A. Metz and M. Schlegel, Parameterization of the quark-quark correlator of a spin-1/2 hadron, Phys. Lett. B 618 (2005) 90 [hep-ph/0504130] [INSPIRE].
  5. [5]
    A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders and M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].
  6. [6]
    F. Stock et al., The FILTEX/HERMES polarized hydrogen atomic beam source, Nucl. Instrum. Meth. A 343 (1994) 334 [INSPIRE].
  7. [7]
    HERMES collaboration, The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring, Nucl. Instrum. Meth. A 540 (2005) 68 [physics/0408137] [INSPIRE].
  8. [8]
    D.G. Crabb and W. Meyer, Solid polarized targets for nuclear and particle physics experiments, Ann. Rev. Nucl. Part. Sci. 47 (1997) 67 [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    S. Goertz, W. Meyer and G. Reicherz, Polarized H, D and 3 He targets for particle physics experiments, Prog. Part. Nucl. Phys. 49 (2002) 403 [Erratum ibid. 51 (2003) 309] [INSPIRE].
  10. [10]
    S. Arnold, A. Metz and M. Schlegel, Dilepton production from polarized hadron hadron collisions, Phys. Rev. D 79 (2009) 034005 [arXiv:0809.2262] [INSPIRE].
  11. [11]
    A. Metz and A. Vossen, Parton fragmentation functions, Prog. Part. Nucl. Phys. 91 (2016) 136 [arXiv:1607.02521] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    G.A. Miller, Densities, parton distributions, and measuring the nonspherical shape of the nucleon, Phys. Rev. C 76 (2007) 065209 [arXiv:0708.2297] [INSPIRE].
  13. [13]
    M. Burkardt, Spin-orbit correlations and single-spin asymmetries, in Workshop on Exclusive Reactions at High Momentum Transfer, Newport News, Virginia, May 21-24, 2007 (2007) [ https://doi.org/10.1142/9789812796950_0006] [arXiv:0709.2966] [INSPIRE].
  14. [14]
    M. Burkardt, The g 2 Structure Function, AIP Conf. Proc. 1155 (2009) 26 [arXiv:0905.4079] [INSPIRE].
  15. [15]
    A. Bacchetta, M. Boglione, A. Henneman and P.J. Mulders, Bounds on transverse momentum dependent distribution and fragmentation functions, Phys. Rev. Lett. 85 (2000) 712 [hep-ph/9912490] [INSPIRE].
  16. [16]
    S. Wandzura and F. Wilczek, Sum rules for spin-dependent electroproduction: Test of relativistic constituent quarks, Phys. Lett. 72B (1977) 195 [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    R.L. Jaffe and X.-D. Ji, Chiral-odd parton distributions and Drell-Yan processes, Nucl. Phys. B 375 (1992) 527 [INSPIRE].
  18. [18]
    R.L. Jaffe, g 2 -The Nucleons Other Spin-Dependent Structure Function, Comments Nucl. Part. Phys. 19 (1990) 239 [INSPIRE].
  19. [19]
    J. Balla, M.V. Polyakov and C. Weiss, Nucleon matrix elements of higher-twist operators from the instanton vacuum, Nucl. Phys. B 510 (1998) 327 [hep-ph/9707515] [INSPIRE].
  20. [20]
    B. Dressler and M.V. Polyakov, Twist-three contribution to h L in the instanton vacuum, Phys. Rev. D 61 (2000) 097501 [hep-ph/9912376] [INSPIRE].
  21. [21]
    M. Göckeler et al., Lattice calculation of the nucleons spin-dependent structure function g 2 reexamined, Phys. Rev. D 63 (2001) 074506 [hep-lat/0011091] [INSPIRE].
  22. [22]
    M. Göckeler et al., Investigation of the second moment of the nucleons g 1 and g 2 structure functions in two-flavor lattice QCD, Phys. Rev. D 72 (2005) 054507 [hep-lat/0506017] [INSPIRE].
  23. [23]
    E143 collaboration, Measurements of the proton and deuteron spin structure functions g 1 and g 2, Phys. Rev. D 58 (1998) 112003 [hep-ph/9802357] [INSPIRE].
  24. [24]
    E155 collaboration, Precision measurement of the proton and deuteron spin structure functions g 2 and asymmetries A 2, Phys. Lett. B 553 (2003) 18 [hep-ex/0204028] [INSPIRE].
  25. [25]
    HERMES collaboration, Measurement of the virtual-photon asymmetry A 2 and the spin-structure function g 2 of the proton, Eur. Phys. J. C 72 (2012) 1921 [arXiv:1112.5584] [INSPIRE].
  26. [26]
    A.M. Kotzinian and P.J. Mulders, Longitudinal quark polarization in transversely polarized nucleons, Phys. Rev. D 54 (1996) 1229 [hep-ph/9511420] [INSPIRE].
  27. [27]
    A.M. Kotzinian and P.J. Mulders, Probing transverse quark polarization via azimuthal asymmetries in leptoproduction, Phys. Lett. B 406 (1997) 373 [hep-ph/9701330] [INSPIRE].
  28. [28]
    A. Kotzinian, B. Parsamyan and A. Prokudin, Predictions for double spin asymmetry A LT in semiinclusive DIS, Phys. Rev. D 73 (2006) 114017 [hep-ph/0603194] [INSPIRE].
  29. [29]
    H. Avakian, A.V. Efremov, K. Goeke, A. Metz, P. Schweitzer and T. Teckentrup, Are there approximate relations among transverse momentum dependent distribution functions?, Phys. Rev. D 77 (2008) 014023 [arXiv:0709.3253] [INSPIRE].
  30. [30]
    A. Metz, P. Schweitzer and T. Teckentrup, Lorentz invariance relations between parton distributions and the Wandzura-Wilczek approximation, Phys. Lett. B 680 (2009) 141 [arXiv:0810.5212] [INSPIRE].
  31. [31]
    T. Teckentrup, A. Metz and P. Schweitzer, Lorentz invariance relations and Wandzura-Wilczek approximation, Mod. Phys. Lett. A 24 (2009) 2950 [arXiv:0910.2567] [INSPIRE].
  32. [32]
    R.D. Tangerman and P.J. Mulders, Polarized twist-three distributions g T and h L and the role of intrinsic transverse momentum, hep-ph/9408305 [INSPIRE].
  33. [33]
    H. Avakian, H. Matevosyan, B. Pasquini and P. Schweitzer, Studying the information content of TMDs using Monte Carlo generators, J. Phys. G 42 (2015) 034015 [INSPIRE].
  34. [34]
    A. Metz and M. Schlegel, Twist-3 single-spin asymmetries in semi-inclusive deep-inelastic scattering, Eur. Phys. J. A 22 (2004) 489 [hep-ph/0403182] [INSPIRE].
  35. [35]
    L.P. Gamberg, D.S. Hwang, A. Metz and M. Schlegel, Light-cone divergence in twist-3 correlation functions, Phys. Lett. B 639 (2006) 508 [hep-ph/0604022] [INSPIRE].
  36. [36]
    J.C. Collins, Leading-twist single-transverse-spin asymmetries: Drell-Yan and deep-inelastic scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].
  37. [37]
    J.P. Ralston and D.E. Soper, Production of Dimuons from High-Energy Polarized Proton Proton Collisions, Nucl. Phys. B 152 (1979) 109 [INSPIRE].
  38. [38]
    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  39. [39]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  40. [40]
    X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett. B 597 (2004) 299 [hep-ph/0405085] [INSPIRE].
  41. [41]
    J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1 [INSPIRE].
  42. [42]
    M.G. Echevarría, A. Idilbi and I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions, Phys. Lett. B 726 (2013) 795 [arXiv:1211.1947] [INSPIRE].
  43. [43]
    S.M. Aybat and T.C. Rogers, TMD Parton Distribution and Fragmentation Functions with QCD Evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].
  44. [44]
    S.M. Aybat, J.C. Collins, J.-W. Qiu and T.C. Rogers, The QCD Evolution of the Sivers Function, Phys. Rev. D 85 (2012) 034043 [arXiv:1110.6428] [INSPIRE].
  45. [45]
    M.G. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, QCD Evolution of the Sivers Asymmetry, Phys. Rev. D 89 (2014) 074013 [arXiv:1401.5078] [INSPIRE].
  46. [46]
    J. Collins and T. Rogers, Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel, Phys. Rev. D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].
  47. [47]
    J.P. Ma and G.P. Zhang, QCD corrections of all structure functions in transverse momentum dependent factorization for Drell-Yan processes, JHEP 02 (2014) 100 [arXiv:1308.2044] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    S.M. Aybat, A. Prokudin and T.C. Rogers, Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements, Phys. Rev. Lett. 108 (2012) 242003 [arXiv:1112.4423] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution, Phys. Rev. D 93 (2016) 014009 [arXiv:1505.05589] [INSPIRE].
  50. [50]
    D. Gutiérrez-Reyes, I. Scimemi and A.A. Vladimirov, Twist-2 matching of transverse momentum dependent distributions, Phys. Lett. B 769 (2017) 84 [arXiv:1702.06558] [INSPIRE].
  51. [51]
    D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse-Momentum-Dependent Distributions with Jets, Phys. Rev. Lett. 121 (2018) 162001 [arXiv:1807.07573] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    I. Scimemi and A. Vladimirov, Matching of transverse momentum dependent distributions at twist-3, Eur. Phys. J. C 78 (2018) 802 [arXiv:1804.08148] [INSPIRE].
  53. [53]
    A.P. Chen and J.P. Ma, Light-cone singularities and transverse-momentum-dependent factorization at twist-3, Phys. Lett. B 768 (2017) 380 [arXiv:1610.08634] [INSPIRE].
  54. [54]
    A.V. Efremov and P. Schweitzer, The chirally-odd twist-3 distribution e a(x), JHEP 08 (2003) 006 [hep-ph/0212044] [INSPIRE].
  55. [55]
    R.L. Jaffe, Spin, twist and hadron structure in deep inelastic processes, in The spin structure of the nucleon. Proceedings, International School of Nucleon Structure, 1st Course, Erice, Italy, August 3-10, 1995, pp. 42-129 (1996) [hep-ph/9602236] [INSPIRE].
  56. [56]
    K. Kanazawa, Y. Koike, A. Metz, D. Pitonyak and M. Schlegel, Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables, Phys. Rev. D 93 (2016) 054024 [arXiv:1512.07233] [INSPIRE].
  57. [57]
    E.V. Shuryak, The role of instantons in quantum chromodynamics: (I). Physical vacuum, Nucl. Phys. B 203 (1982) 93 [INSPIRE].
  58. [58]
    D. Diakonov and V.Y. Petrov, Instanton-based vacuum from Feynman variational principle, Nucl. Phys. B 245 (1984) 259 [INSPIRE].
  59. [59]
    D. Diakonov, M.V. Polyakov and C. Weiss, Hadronic matrix elements of gluon operators in the instanton vacuum, Nucl. Phys. B 461 (1996) 539 [hep-ph/9510232] [INSPIRE].
  60. [60]
    Spin Muon (SMC) collaboration, Spin asymmetry in muon-proton deep inelastic scattering on a transversely polarized target, Phys. Lett. B 336 (1994) 125 [hep-ex/9408001] [INSPIRE].
  61. [61]
    A. Accardi, A. Bacchetta, W. Melnitchouk and M. Schlegel, What can break the Wandzura-Wilczek relation?, JHEP 11 (2009) 093 [arXiv:0907.2942] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C 5 (1998) 461 [hep-ph/9806404] [INSPIRE].
  63. [63]
    A.V. Efremov, K. Goeke and P. Schweitzer, Collins effect in semiinclusive deeply inelastic scattering and in electron-positron-annihilation, Phys. Rev. D 73 (2006) 094025 [hep-ph/0603054] [INSPIRE].
  64. [64]
    M. Anselmino et al., Transversity and Collins functions from SIDIS and e + e data, Phys. Rev. D 75 (2007) 054032 [hep-ph/0701006] [INSPIRE].
  65. [65]
    M. Anselmino et al., Update on transversity and Collins functions from SIDIS and e + e data, Nucl. Phys. Proc. Suppl. 191 (2009) 98 [arXiv:0812.4366] [INSPIRE].
  66. [66]
    Y. Koike, K. Tanaka and S. Yoshida, Drell-Yan double-spin asymmetry A LT in polarized \( p\overline{p} \) collisions: Wandzura-Wilczek contribution, Phys. Lett. B 668 (2008) 286 [arXiv:0805.2289] [INSPIRE].
  67. [67]
    P. Hägler, B.U. Musch, J.W. Negele and A. Schafer, Intrinsic quark transverse momentum in the nucleon from lattice QCD, EPL 88 (2009) 61001 [arXiv:0908.1283] [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    B.U. Musch, P. Hägler, J.W. Negele and A. Schäfer, Exploring quark transverse momentum distributions with lattice QCD, Phys. Rev. D 83 (2011) 094507 [arXiv:1011.1213] [INSPIRE].
  69. [69]
    C. Alexandrou et al., Computation of parton distributions from the quasi-PDF approach at the physical point, EPJ Web Conf. 175 (2018) 14008 [arXiv:1710.06408] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    T. Ishikawa, Y.-Q. Ma, J.-W. Qiu and S. Yoshida, Renormalizability of quasiparton distribution functions, Phys. Rev. D 96 (2017) 094019 [arXiv:1707.03107] [INSPIRE].
  71. [71]
    M. Engelhardt, P. Hägler, B. Musch, J. Negele and A. Schäfer, Lattice QCD study of the Boer-Mulders effect in a pion, Phys. Rev. D 93 (2016) 054501 [arXiv:1506.07826] [INSPIRE].
  72. [72]
    X. Ji, P. Sun, X. Xiong and F. Yuan, Soft factor subtraction and transverse momentum dependent parton distributions on the lattice, Phys. Rev. D 91 (2015) 074009 [arXiv:1405.7640] [INSPIRE].
  73. [73]
    B.U. Musch, P. Hägler, M. Engelhardt, J.W. Negele and A. Schafer, Sivers and Boer-Mulders observables from lattice QCD, Phys. Rev. D 85 (2012) 094510 [arXiv:1111.4249] [INSPIRE].
  74. [74]
    X. Ji, J.-H. Zhang and Y. Zhao, Renormalization in Large Momentum Effective Theory of Parton Physics, Phys. Rev. Lett. 120 (2018) 112001 [arXiv:1706.08962] [INSPIRE].
  75. [75]
    B. Yoon et al., Nucleon transverse-momentum-dependent parton distributions in lattice QCD: Renormalization patterns and discretization effects, Phys. Rev. D 96 (2017) 094508 [arXiv:1706.03406] [INSPIRE].
  76. [76]
    J. Green, K. Jansen and F. Steffens, Nonperturbative Renormalization of Nonlocal Quark Bilinears for Parton Quasidistribution Functions on the Lattice Using an Auxiliary Field, Phys. Rev. Lett. 121 (2018) 022004 [arXiv:1707.07152] [INSPIRE].
  77. [77]
    J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin and H.-W. Lin, Pion distribution amplitude from lattice QCD, Phys. Rev. D 95 (2017) 094514 [arXiv:1702.00008] [INSPIRE].
  78. [78]
    LHPC and SESAM collaborations, Transverse structure of nucleon parton distributions from lattice QCD, Phys. Rev. Lett. 93 (2004) 112001 [hep-lat/0312014] [INSPIRE].
  79. [79]
    LHPC collaboration, Nucleon generalized parton distributions from full lattice QCD, Phys. Rev. D 77 (2008) 094502 [arXiv:0705.4295] [INSPIRE].
  80. [80]
    QCDSF and UKQCD collaborations, Quark helicity flip generalized parton distributions from two-flavor lattice QCD, Phys. Lett. B 627 (2005) 113 [hep-lat/0507001] [INSPIRE].
  81. [81]
    M. Burkardt and Y. Koike, Violation of sum rules for twist-3 parton distributions in QCD, Nucl. Phys. B 632 (2002) 311 [hep-ph/0111343] [INSPIRE].
  82. [82]
    S.D. Bass, Fixed poles, polarized glue and nucleon spin structure, Acta Phys. Polon. B 34 (2003) 5893 [hep-ph/0311174] [INSPIRE].
  83. [83]
    M. Stratmann, Bag model predictions for polarized structure functions and their Q 2 -evolutions, Z. Phys. C 60 (1993) 763 [INSPIRE].
  84. [84]
    A.I. Signal, Calculations of higher twist distribution functions in the MIT bag model, Nucl. Phys. B 497 (1997) 415 [hep-ph/9610480] [INSPIRE].
  85. [85]
    H. Avakian, A.V. Efremov, P. Schweitzer and F. Yuan, The transverse momentum dependent distribution functions in the bag model, Phys. Rev. D 81 (2010) 074035 [arXiv:1001.5467] [INSPIRE].
  86. [86]
    R. Jakob, P.J. Mulders and J. Rodrigues, Modeling quark distribution and fragmentation functions, Nucl. Phys. A 626 (1997) 937 [hep-ph/9704335] [INSPIRE].
  87. [87]
    M. Wakamatsu, Polarized structure functions g 2(x) in the chiral quark soliton model, Phys. Lett. B 487 (2000) 118 [hep-ph/0006212] [INSPIRE].
  88. [88]
    B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a light-cone quark model, Phys. Rev. D 78 (2008) 034025 [arXiv:0806.2298] [INSPIRE].
  89. [89]
    C. Lorce, B. Pasquini and M. Vanderhaeghen, Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon, JHEP 05 (2011) 041 [arXiv:1102.4704] [INSPIRE].CrossRefzbMATHGoogle Scholar
  90. [90]
    R. Kundu and A. Metz, Higher twist and transverse momentum dependent parton distributions: A Light front Hamiltonian approach, Phys. Rev. D 65 (2002) 014009 [hep-ph/0107073] [INSPIRE].
  91. [91]
    M. Schlegel and A. Metz, On the validity of Lorentz invariance relations between parton distributions, in Proceedings, 10th Advanced Research Workshop on High-Energy Spin Physics (SPIN-03), Dubna, Russia, September 16-20, 2003, pp. 169-173 (2004) [hep-ph/0406289] [INSPIRE].
  92. [92]
    K. Goeke, A. Metz, P.V. Pobylitsa and M.V. Polyakov, Lorentz invariance relations among parton distributions revisited, Phys. Lett. B 567 (2003) 27 [hep-ph/0302028] [INSPIRE].
  93. [93]
    C. Lorcé, B. Pasquini and P. Schweitzer, Unpolarized transverse momentum dependent parton distribution functions beyond leading twist in quark models, JHEP 01 (2015) 103 [arXiv:1411.2550] [INSPIRE].CrossRefGoogle Scholar
  94. [94]
    C. Lorcé, B. Pasquini and P. Schweitzer, Transverse pion structure beyond leading twist in constituent models, Eur. Phys. J. C 76 (2016) 415 [arXiv:1605.00815] [INSPIRE].
  95. [95]
    P. Zavada, The Structure functions and parton momenta distribution in the hadron rest system, Phys. Rev. D 55 (1997) 4290 [hep-ph/9609372] [INSPIRE].
  96. [96]
    A.V. Efremov, P. Schweitzer, O.V. Teryaev and P. Zavada, The relation between TMDs and PDFs in the covariant parton model approach, Phys. Rev. D 83 (2011) 054025 [arXiv:1012.5296] [INSPIRE].
  97. [97]
    A.V. Efremov, P. Schweitzer, O.V. Teryaev and P. Zavada, Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion, Phys. Rev. D 80 (2009) 014021 [arXiv:0903.3490] [INSPIRE].
  98. [98]
    P. Schweitzer, Chirally-odd twist-3 distribution function e a(x) in the chiral quark-soliton model, Phys. Rev. D 67 (2003) 114010 [hep-ph/0303011] [INSPIRE].
  99. [99]
    Y. Ohnishi and M. Wakamatsu, πN sigma term and chira-odd twist-3 distribution function e(x) of the nucleon in the chiral quark soliton model, Phys. Rev. D 69 (2004) 114002 [hep-ph/0312044] [INSPIRE].
  100. [100]
    C. Cebulla, J. Ossmann, P. Schweitzer and D. Urbano, The Twist-3 Parton Distribution Function e a(x) in Large-N c Chiral Theory, Acta Phys. Polon. B 39 (2008) 609 [arXiv:0710.3103] [INSPIRE].
  101. [101]
    S. Meissner, A. Metz and K. Goeke, Relations between generalized and transverse momentum dependent parton distributions, Phys. Rev. D 76 (2007) 034002 [hep-ph/0703176] [INSPIRE].
  102. [102]
    A. Mukherjee, Twist-three Distribution e(x): Sum Rules and Equation of Motion Relations, Phys. Lett. B 687 (2010) 180 [arXiv:0912.1446] [INSPIRE].
  103. [103]
    A. Harindranath and W.-M. Zhang, Examination of Wandzura-Wilczek relation for g 2(x, Q 2) in pQCD, Phys. Lett. B 408 (1997) 347 [hep-ph/9706419] [INSPIRE].
  104. [104]
    D. Boer, P.J. Mulders and F. Pijlman, Universality of T-odd effects in single spin and azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [INSPIRE].
  105. [105]
    X. Ji, J.-W. Qiu, W. Vogelsang and F. Yuan, Unified Picture for Single Transverse-Spin Asymmetries in Hard-Scattering Processes, Phys. Rev. Lett. 97 (2006) 082002 [hep-ph/0602239] [INSPIRE].
  106. [106]
    A. Ali, V.M. Braun and G. Hiller, Asymptotic solutions of the evolution equation for the polarized nucleon structure function g 2(x, Q 2), Phys. Lett. B 266 (1991) 117 [INSPIRE].
  107. [107]
    Y. Koike and K. Tanaka, Q 2 evolution of nucleons chiral odd twist-three structure function: h L(x, Q 2), Phys. Rev. D 51 (1995) 6125 [hep-ph/9412310] [INSPIRE].
  108. [108]
    I.I. Balitsky, V.M. Braun, Y. Koike and K. Tanaka, Q 2 evolution of chiral odd twist-three distributions h L(x, Q 2) and e(x, Q 2) in the large N c limit, Phys. Rev. Lett. 77 (1996) 3078 [hep-ph/9605439] [INSPIRE].
  109. [109]
    A.V. Belitsky and D. Müller, Scale dependence of the chiral odd twist-three distributions h L(x) and e(x), Nucl. Phys. B 503 (1997) 279 [hep-ph/9702354] [INSPIRE].
  110. [110]
    M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, The role of Cahn and Sivers effects in deep inelastic scattering, Phys. Rev. D 71 (2005) 074006 [hep-ph/0501196] [INSPIRE].
  111. [111]
    J.C. Collins, A.V. Efremov, K. Goeke, S. Menzel, A. Metz and P. Schweitzer, Sivers effect in semiinclusive deeply inelastic scattering, Phys. Rev. D 73 (2006) 014021 [hep-ph/0509076] [INSPIRE].
  112. [112]
    U. D’Alesio and F. Murgia, Azimuthal and single spin asymmetries in hard scattering processes, Prog. Part. Nucl. Phys. 61 (2008) 394 [arXiv:0712.4328] [INSPIRE].CrossRefGoogle Scholar
  113. [113]
    P. Schweitzer, T. Teckentrup and A. Metz, Intrinsic transverse parton momenta in deeply inelastic reactions, Phys. Rev. D 81 (2010) 094019 [arXiv:1003.2190] [INSPIRE].
  114. [114]
    A. Signori, A. Bacchetta, M. Radici and G. Schnell, Investigations into the flavor dependence of partonic transverse momentum, JHEP 11 (2013) 194 [arXiv:1309.3507] [INSPIRE].CrossRefGoogle Scholar
  115. [115]
    M. Anselmino, M. Boglione, J.O. Gonzalez Hernandez, S. Melis and A. Prokudin, Unpolarised transverse momentum dependent distribution and fragmentation functions from SIDIS multiplicities, JHEP 04 (2014) 005 [arXiv:1312.6261] [INSPIRE].CrossRefGoogle Scholar
  116. [116]
    A. Bacchetta, D. Boer, M. Diehl and P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum, JHEP 08 (2008) 023 [arXiv:0803.0227] [INSPIRE].CrossRefGoogle Scholar
  117. [117]
    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].
  118. [118]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
  119. [119]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. D 75 (2007) 114010 [hep-ph/0703242] [INSPIRE].
  120. [120]
    P. Schweitzer, M. Strikman and C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking, JHEP 01 (2013) 163 [arXiv:1210.1267] [INSPIRE].CrossRefGoogle Scholar
  121. [121]
    J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato and B. Wang, Relating transverse-momentum-dependent and collinear factorization theorems in a generalized formalism, Phys. Rev. D 94 (2016) 034014 [arXiv:1605.00671] [INSPIRE].
  122. [122]
    CLAS collaboration, Measurement of unpolarized semi-inclusive π + electroproduction off the proton, Phys. Rev. D 80 (2009) 032004 [arXiv:0809.1153] [INSPIRE].
  123. [123]
    HERMES collaboration, Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Rev. D 87 (2013) 074029 [arXiv:1212.5407] [INSPIRE].
  124. [124]
    COMPASS collaboration, Transverse-momentum-dependent multiplicities of charged hadrons in muon-deuteron deep inelastic scattering, Phys. Rev. D 97 (2018) 032006 [arXiv:1709.07374] [INSPIRE].
  125. [125]
    A. Bacchetta, F. Delcarro, C. Pisano, M. Radici and A. Signori, Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP 06 (2017) 081 [arXiv:1703.10157] [INSPIRE].CrossRefGoogle Scholar
  126. [126]
    CLAS collaboration, Measurement of Single- and Double-Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target, Phys. Rev. Lett. 105 (2010) 262002 [arXiv:1003.4549] [INSPIRE].
  127. [127]
    HERMES collaboration, Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons, arXiv:1810.07054 [INSPIRE].
  128. [128]
    COMPASS collaboration, Azimuthal asymmetries of charged hadrons produced in high-energy muon scattering off longitudinally polarised deuterons, Eur. Phys. J. C 78 (2018) 952 [arXiv:1609.06062] [INSPIRE].
  129. [129]
    D.W. Sivers, Single-spin production asymmetries from the hard scattering of pointlike constituents, Phys. Rev. D 41 (1990) 83 [INSPIRE].
  130. [130]
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, New insight on the Sivers transverse momentum dependent distribution function, J. Phys. Conf. Ser. 295 (2011) 012062 [arXiv:1012.3565] [INSPIRE].
  131. [131]
    M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Extracting the Sivers function from polarized semi-inclusive deep inelastic scattering data and making predictions, Phys. Rev. D 72 (2005) 094007 [Erratum ibid. D 72 (2005) 099903] [hep-ph/0507181] [INSPIRE].
  132. [132]
    M. Anselmino et al., Comparing extractions of Sivers functions, in Transversity. Proceedings, Workshop, Como, Italy, September 7-10, 2005, pp. 236-243 (2005) [ https://doi.org/10.1142/9789812773272_0028] [hep-ph/0511017] [INSPIRE].
  133. [133]
    W. Vogelsang and F. Yuan, Single-transverse-spin asymmetries: From deep inelastic scattering to hadronic collisions, Phys. Rev. D 72 (2005) 054028 [hep-ph/0507266] [INSPIRE].
  134. [134]
    M. Anselmino et al., Sivers effect for pion and kaon production in semi-inclusive deep inelastic scattering, Eur. Phys. J. A 39 (2009) 89 [arXiv:0805.2677] [INSPIRE].
  135. [135]
    A. Bacchetta and M. Radici, Constraining Quark Angular Momentum through Semi-Inclusive Measurements, Phys. Rev. Lett. 107 (2011) 212001 [arXiv:1107.5755] [INSPIRE].CrossRefGoogle Scholar
  136. [136]
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Sivers Distribution Functions and the Latest SIDIS Data, in 19th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011), Newport News, Virginia, April 11-15, 2011 (2011) [arXiv:1107.4446] [INSPIRE].
  137. [137]
    HERMES collaboration, Observation of the Naive-T-odd Sivers Effect in Deep-Inelastic Scattering, Phys. Rev. Lett. 103 (2009) 152002 [arXiv:0906.3918] [INSPIRE].
  138. [138]
    COMPASS collaboration, IIExperimental investigation of transverse spin asymmetries in μ-p SIDIS processes: Sivers asymmetries, Phys. Lett. B 717 (2012) 383 [arXiv:1205.5122] [INSPIRE].
  139. [139]
    M. Anselmino, M. Boglione and S. Melis, Strategy towards the extraction of the Sivers function with transverse momentum dependent evolution, Phys. Rev. D 86 (2012) 014028 [arXiv:1204.1239] [INSPIRE].
  140. [140]
    S.J. Brodsky, D.S. Hwang and I. Schmidt, Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering, Phys. Lett. B 530 (2002) 99 [hep-ph/0201296] [INSPIRE].
  141. [141]
    S.J. Brodsky, D.S. Hwang and I. Schmidt, Initial-state interactions and single-spin asymmetries in Drell-Yan processes, Nucl. Phys. B 642 (2002) 344 [hep-ph/0206259] [INSPIRE].
  142. [142]
    STAR collaboration, Measurement of the transverse single-spin asymmetry in p + pW ± /Z 0 at RHIC, Phys. Rev. Lett. 116 (2016) 132301 [arXiv:1511.06003] [INSPIRE].
  143. [143]
    COMPASS collaboration, First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process, Phys. Rev. Lett. 119 (2017) 112002 [arXiv:1704.00488] [INSPIRE].
  144. [144]
    B. Parsamyan, First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process, PoS(DIS2017)243 (2018) [arXiv:1801.01487] [INSPIRE].
  145. [145]
    A. Bacchetta and M. Radici, Partial-wave analysis of two-hadron fragmentation functions, Phys. Rev. D 67 (2003) 094002 [hep-ph/0212300] [INSPIRE].
  146. [146]
    A. Bacchetta and M. Radici, Two-hadron semi-inclusive production including subleading twist contributions, Phys. Rev. D 69 (2004) 074026 [hep-ph/0311173] [INSPIRE].
  147. [147]
    A. Bacchetta, A. Courtoy and M. Radici, First Glances at the Transversity Parton Distribution through Dihadron Fragmentation Functions, Phys. Rev. Lett. 107 (2011) 012001 [arXiv:1104.3855] [INSPIRE].
  148. [148]
    A. Bacchetta, A. Courtoy and M. Radici, First extraction of valence transversities in a collinear framework, JHEP 03 (2013) 119 [arXiv:1212.3568] [INSPIRE].CrossRefGoogle Scholar
  149. [149]
    M. Radici, A. Courtoy, A. Bacchetta and M. Guagnelli, Improved extraction of valence transversity distributions from inclusive dihadron production, JHEP 05 (2015) 123 [arXiv:1503.03495] [INSPIRE].CrossRefGoogle Scholar
  150. [150]
    M. Radici and A. Bacchetta, First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data, Phys. Rev. Lett. 120 (2018) 192001 [arXiv:1802.05212] [INSPIRE].CrossRefGoogle Scholar
  151. [151]
    J.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B 396 (1993) 161 [hep-ph/9208213] [INSPIRE].
  152. [152]
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Simultaneous extraction of transversity and Collins functions from new SIDIS and e + e data, Phys. Rev. D 87 (2013) 094019 [arXiv:1303.3822] [INSPIRE].
  153. [153]
    Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Nucleon tensor charge from Collins azimuthal asymmetry measurements, Phys. Rev. D 91 (2015) 071501 [arXiv:1410.4877] [INSPIRE].
  154. [154]
    M. Anselmino et al., Collins functions for pions from SIDIS and new e + e data: a first glance at their transverse momentum dependence, Phys. Rev. D 92 (2015) 114023 [arXiv:1510.05389] [INSPIRE].
  155. [155]
    HERMES collaboration, Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693 (2010) 11 [arXiv:1006.4221] [INSPIRE].
  156. [156]
    COMPASS collaboration, Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons, Phys. Lett. B 744 (2015) 250 [arXiv:1408.4405] [INSPIRE].
  157. [157]
    V. Barone, S. Melis and A. Prokudin, The Boer-Mulders effect in unpolarized SIDIS: An Analysis of the COMPASS and HERMES data on the cos 2ϕ asymmetry, Phys. Rev. D 81 (2010) 114026 [arXiv:0912.5194] [INSPIRE].
  158. [158]
    HERMES collaboration, Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons, Phys. Rev. D 87 (2013) 012010 [arXiv:1204.4161] [INSPIRE].
  159. [159]
    COMPASS collaboration, Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons, Nucl. Phys. B 886 (2014) 1046 [arXiv:1401.6284] [INSPIRE].
  160. [160]
    R.N. Cahn, Azimuthal dependence in leptoproduction: A simple parton model calculation, Phys. Lett. 78B (1978) 269 [INSPIRE].CrossRefGoogle Scholar
  161. [161]
    X. Cao, Parton distributions and cos 2ϕ h asymmetry induced by anomalous photon-quark coupling, Phys. Rev. D 97 (2018) 114010 [arXiv:1802.02417] [INSPIRE].
  162. [162]
    V. Barone, S. Melis and A. Prokudin, Azimuthal asymmetries in unpolarized Drell-Yan processes and the Boer-Mulders distributions of antiquarks, Phys. Rev. D 82 (2010) 114025 [arXiv:1009.3423] [INSPIRE].
  163. [163]
    V. Barone, M. Boglione, J.O. Gonzalez Hernandez and S. Melis, Phenomenological analysis of azimuthal asymmetries in unpolarized semi-inclusive deep inelastic scattering, Phys. Rev. D 91 (2015) 074019 [arXiv:1502.04214] [INSPIRE].
  164. [164]
    H. Avakian, A.V. Efremov, P. Schweitzer and F. Yuan, Transverse momentum dependent distribution function h 1 T and the single spin asymmetry \( {A_{UT}^{\sin}}^{\left(3\phi -{\phi}_S\right)} \), Phys. Rev. D 78 (2008) 114024 [arXiv:0805.3355] [INSPIRE].
  165. [165]
    J. She, J. Zhu and B.-Q. Ma, h 1 T and quark orbital angular momentum, Phys. Rev. D 79 (2009) 054008 [arXiv:0902.3718] [INSPIRE].
  166. [166]
    C. Lorcé and B. Pasquini, The pretzelosity TMD and quark orbital angular momentum, Phys. Lett. B 710 (2012) 486 [arXiv:1111.6069] [INSPIRE].
  167. [167]
    B. Parsamyan, Transverse spin asymmetries at COMPASS: beyond Collins and Sivers effects, PoS(DIS2013)231 (2013) [arXiv:1307.0183] [INSPIRE].
  168. [168]
    G. Schnell, The Sivers and other semi-inclusive single-spin asymmetries at HERMES, PoS(DIS2010)247 (2010).Google Scholar
  169. [169]
    C. Lefky and A. Prokudin, Extraction of the distribution function h 1 T from experimental data, Phys. Rev. D 91 (2015) 034010 [arXiv:1411.0580] [INSPIRE].
  170. [170]
    A. Kotzinian, SIDIS Asymmetries in Quark-Diquark Model, in Transversity 2008: 2nd International Workshop on Transverse Polarization Phenomena in Hard Processes, Ferrara, Italy, May 28-31, 2008 (2008) [ https://doi.org/10.1142/9789814277785_0029] [arXiv:0806.3804] [INSPIRE].
  171. [171]
    S. Boffi, A.V. Efremov, B. Pasquini and P. Schweitzer, Azimuthal spin asymmetries in light-cone constituent quark models, Phys. Rev. D 79 (2009) 094012 [arXiv:0903.1271] [INSPIRE].
  172. [172]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  173. [173]
    Jefferson Lab Hall A collaboration, Beam-Target Double Spin Asymmetry A LT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3 He Target at 1.4 < Q 2 < 2.7 GeV 2, Phys. Rev. Lett. 108 (2012) 052001 [arXiv:1108.0489] [INSPIRE].
  174. [174]
    COMPASS collaboration, New target transverse spin dependent azimuthal asymmetries from COMPASS experiment, Eur. Phys. J. ST 162 (2008) 89 [arXiv:0709.3440] [INSPIRE].
  175. [175]
    B. Parsamyan, Transverse spin azimuthal asymmetries in SIDIS at COMPASS: Multidimensional analysis, Int. J. Mod. Phys. Conf. Ser. 40 (2016) 1660029 [arXiv:1504.01599] [INSPIRE].CrossRefGoogle Scholar
  176. [176]
    B. Parsamyan, Measurement of target-polarization dependent azimuthal asymmetries in SIDIS and Drell-Yan processes at COMPASS experiment, PoS(QCDEV2017)042 (2018).Google Scholar
  177. [177]
    HERMES collaboration, Measurements of Double-Spin Asymmetries in SIDIS of Longitudinally Polarized Leptons off Transversely Polarized Protons, arXiv:1107.4227 [INSPIRE].
  178. [178]
    HERMES collaboration, Accessing TMDs at HERMES, AIP Conf. Proc. 1441 (2012) 229 [INSPIRE].
  179. [179]
    HERMES collaboration, Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction, Phys. Rev. Lett. 84 (2000) 4047 [hep-ex/9910062] [INSPIRE].
  180. [180]
    B. Parsamyan, Measurement of longitudinal-target-polarization dependent azimuthal asymmetries in SIDIS at COMPASS experiment, PoS(DIS2017)259 (2018) [arXiv:1801.01488] [INSPIRE].
  181. [181]
    CLAS collaboration, Semi-Inclusive π 0 target and beam-target asymmetries from 6 GeV electron scattering with CLAS, Phys. Lett. B 782 (2018) 662 [arXiv:1709.10054] [INSPIRE].
  182. [182]
    HERMES collaboration, Measurement of single-spin azimuthal asymmetries in semi-inclusive electroproduction of pions and kaons on a longitudinally polarised deuterium target, Phys. Lett. B 562 (2003) 182 [hep-ex/0212039] [INSPIRE].
  183. [183]
    CLAS collaboration, Measurement of beam-spin asymmetries for π + electroproduction above the baryon resonance region, Phys. Rev. D 69 (2004) 112004 [hep-ex/0301005] [INSPIRE].
  184. [184]
    HERMES collaboration, Beam-spin asymmetries in the azimuthal distribution of pion electroproduction, Phys. Lett. B 648 (2007) 164 [hep-ex/0612059] [INSPIRE].
  185. [185]
    W. Gohn, H. Avakian, K. Joo and M. Ungaro, Beam spin asymmetries from semi-inclusive pion electroproduction in deep inelastic scattering, AIP Conf. Proc. 1149 (2009) 461 [INSPIRE].CrossRefGoogle Scholar
  186. [186]
    M. Aghasyan et al., Precise measurements of beam spin asymmetries in semi-inclusive π 0 production, Phys. Lett. B 704 (2011) 397 [arXiv:1106.2293] [INSPIRE].
  187. [187]
    CLAS collaboration, Beam-spin asymmetries from semi-inclusive pion electroproduction, Phys. Rev. D 89 (2014) 072011 [arXiv:1402.4097] [INSPIRE].
  188. [188]
    A.V. Efremov, K. Goeke and P. Schweitzer, Azimuthal asymmetries at CLAS: Extraction of e a(x) and prediction of A U L, Phys. Rev. D 67 (2003) 114014 [hep-ph/0208124] [INSPIRE].
  189. [189]
    A. Afanasev and C.E. Carlson, Single spin beam asymmetry in semiexclusive deep inelastic electroproduction, in Intersections of particle and nuclear physics. Proceedings, 8th Conference, CIPANP 2003, New York, U.S.A., May 19-24, 2003 (2003) [hep-ph/0308163] [INSPIRE].
  190. [190]
    F. Yuan, The Beam single spin asymmetry in semi-inclusive deep inelastic scattering, Phys. Lett. B 589 (2004) 28 [hep-ph/0310279] [INSPIRE].
  191. [191]
    L.P. Gamberg, D.S. Hwang and K.A. Oganessyan, Chiral-odd fragmentation functions in single pion inclusive electroproduction, Phys. Lett. B 584 (2004) 276 [hep-ph/0311221] [INSPIRE].
  192. [192]
    A.V. Afanasev and C.E. Carlson, Beam single-spin asymmetry in semiinclusive deep inelastic scattering, Phys. Rev. D 74 (2006) 114027 [hep-ph/0603269] [INSPIRE].
  193. [193]
    W. Mao and Z. Lu, Beam single spin asymmetry of neutral pion production in semi-inclusive deep inelastic scattering, Phys. Rev. D 87 (2013) 014012 [arXiv:1210.4790] [INSPIRE].
  194. [194]
    W. Mao and Z. Lu, Beam spin asymmetries of charged and neutral pion production in semi-inclusive DIS, Eur. Phys. J. C 73 (2013) 2557 [arXiv:1306.1004] [INSPIRE].
  195. [195]
    W. Mao and Z. Lu, On the beam spin asymmetries of electroproduction of charged hadrons off the nucleon targets, Eur. Phys. J. C 74 (2014) 2910 [arXiv:1401.4653] [INSPIRE].
  196. [196]
    A. Courtoy, Insights into the higher-twist distribution e(x) at CLAS, arXiv:1405.7659 [INSPIRE].
  197. [197]
    Y. Yang, Z. Lu and I. Schmidt, Twist-3 T-odd fragmentation functions G and \( {\tilde{G}}^{\perp } \) in a spectator model, Phys. Lett. B 761 (2016) 333 [arXiv:1607.01638] [INSPIRE].
  198. [198]
    B. Pasquini and S. Rodini, The twist-three distribution e q (x, k ) in a light-front model, Phys. Lett. B 788 (2019) 414 [arXiv:1806.10932] [INSPIRE].
  199. [199]
    W. Mao, Z. Lu, B.-Q. Ma and I. Schmidt, Double spin asymmetries \( {A}_{LT}^{\cos {\phi}_S} \) and \( {A}_{LT}^{\cos \left(2{\phi}_h-{\phi}_S\right)} \) in semi-inclusive DIS, Phys. Rev. D 91 (2015) 034029 [arXiv:1412.7390] [INSPIRE].
  200. [200]
    X. Wang, W. Mao and Z. Lu, Double-spin asymmetry \( {A}_{LT}^{\cos {\phi}_S} \) in semi-inclusive DIS at CLAS12 and EIC within the collinear framework, Phys. Rev. D 94 (2016) 074014 [arXiv:1606.01649] [INSPIRE].
  201. [201]
    M. Anselmino, A. Efremov, A. Kotzinian and B. Parsamyan, Transverse momentum dependence of the quark helicity distributions and the Cahn effect in double-spin asymmetry A LL in semi inclusive DIS, Phys. Rev. D 74 (2006) 074015 [hep-ph/0608048] [INSPIRE].
  202. [202]
    W. Mao, X. Wang, X. Du, Z. Lu and B.-Q. Ma, On the cos ϕ h asymmetry in electroproduction of pions in double longitudinally polarized process, Nucl. Phys. A 945 (2016) 153 [INSPIRE].
  203. [203]
    HERMES collaboration, Single-spin azimuthal asymmetries in electroproduction of neutral pions in semi-inclusive deep-inelastic scattering, Phys. Rev. D 64 (2001) 097101 [hep-ex/0104005] [INSPIRE].
  204. [204]
    E. De Sanctis, W.D. Nowak and K.A. Oganesian, Single-spin azimuthal asymmetries in theReduced twist-3 approximation”, Phys. Lett. B 483 (2000) 69 [hep-ph/0002091] [INSPIRE].
  205. [205]
    K.A. Oganessian, N. Bianchi, E. De Sanctis and W.D. Nowak, Investigation of single spin asymmetries in π + electroproduction, Nucl. Phys. A 689 (2001) 784 [hep-ph/0010261] [INSPIRE].
  206. [206]
    A.V. Efremov, K. Goeke and P. Schweitzer, Predictions for azimuthal asymmetries in pion and kaon production in SIDIS off a longitudinally polarized deuterium target at HERMES, Eur. Phys. J. C 24 (2002) 407 [hep-ph/0112166] [INSPIRE].
  207. [207]
    A.V. Efremov, K. Goeke and P. Schweitzer, Azimuthal asymmetry in electroproduction of neutral pions in semiinclusive DIS, Phys. Lett. B 522 (2001) 37 [Erratum ibid. B 544 (2002) 389] [hep-ph/0108213] [INSPIRE].
  208. [208]
    A.V. Efremov, K. Goeke and P. Schweitzer, Azimuthal asymmetries and Collins analyzing power, Nucl. Phys. A 711 (2002) 84 [hep-ph/0206267] [INSPIRE].
  209. [209]
    B.-Q. Ma, I. Schmidt and J.-J. Yang, Azimuthal spin asymmetries of pion electroproduction, Phys. Rev. D 65 (2002) 034010 [hep-ph/0110324] [INSPIRE].
  210. [210]
    B.-Q. Ma, I. Schmidt and J.-J. Yang, Reanalysis of azimuthal spin asymmetries of meson electroproduction, Phys. Rev. D 66 (2002) 094001 [hep-ph/0209114] [INSPIRE].
  211. [211]
    P. Schweitzer and A. Bacchetta, Azimuthal single spin asymmetries in SIDIS in the light of chiral symmetry breaking, Nucl. Phys. A 732 (2004) 106 [hep-ph/0310318] [INSPIRE].
  212. [212]
    Z. Lu, Single-spin asymmetries in electroproduction of pions on the longitudinally polarized nucleon targets, Phys. Rev. D 90 (2014) 014037 [arXiv:1404.4229] [INSPIRE].
  213. [213]
    HERMES collaboration, Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target, Phys. Lett. B 622 (2005) 14 [hep-ex/0505042] [INSPIRE].
  214. [214]
    W. Mao, Z. Lu and B.-Q. Ma, Transverse single-spin asymmetries of pion production in semi-inclusive DIS at subleading twist, Phys. Rev. D 90 (2014) 014048 [arXiv:1405.3876] [INSPIRE].
  215. [215]
    T.P. Cheng and A. Zee, Coincidence Electroproduction and Scaling in the Regge Region, Phys. Rev. D 6 (1972) 885 [INSPIRE].
  216. [216]
    European Muon collaboration, Measurement of hadronic azimuthal distributions in deep inelastic muon proton scattering, Phys. Lett. 130B (1983) 118 [INSPIRE].
  217. [217]
    J.T. Dakin et al., Preliminary results on the inclusive electroproduction of hadrons, (1972) [INSPIRE].
  218. [218]
    H. Mkrtchyan et al., Transverse momentum dependence of semi-inclusive pion production, Phys. Lett. B 665 (2008) 20 [arXiv:0709.3020] [INSPIRE].
  219. [219]
    M. Anselmino et al., General helicity formalism for polarized semi-inclusive deep inelastic scattering, Phys. Rev. D 83 (2011) 114019 [arXiv:1101.1011] [INSPIRE].
  220. [220]
    A.V. Efremov, K. Goeke, S. Menzel, A. Metz and P. Schweitzer, Sivers effect in semi-inclusive DIS and in the Drell-Yan process, Phys. Lett. B 612 (2005) 233 [hep-ph/0412353] [INSPIRE].
  221. [221]
    L. Gamberg, Z.-B. Kang and A. Prokudin, Indication on the Process Dependence of the Sivers Effect, Phys. Rev. Lett. 110 (2013) 232301 [arXiv:1302.3218] [INSPIRE].CrossRefGoogle Scholar
  222. [222]
    P. Sun and F. Yuan, Energy evolution for the Sivers asymmetries in hard processes, Phys. Rev. D 88 (2013) 034016 [arXiv:1304.5037] [INSPIRE].
  223. [223]
    M. Glück, E. Reya, M. Stratmann and W. Vogelsang, Models for the polarized parton distributions of the nucleon, Phys. Rev. D 63 (2001) 094005 [hep-ph/0011215] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ConnecticutStorrsU.S.A.
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsU.S.A.
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia
  4. 4.Yerevan Physics InstituteYerevanArmenia
  5. 5.INFN, Sezione di TorinoTorinoItaly
  6. 6.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  7. 7.Division of SciencePenn State BerksReadingU.S.A.
  8. 8.Department of PhysicsNew Mexico State UniversityLas CrucesU.S.A.
  9. 9.Department of Theoretical PhysicsUniversity of the Basque Country UPV/EHUBilbaoSpain
  10. 10.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  11. 11.Institute for Theoretical PhysicsUniversität TübingenTübingenGermany
  12. 12.CERNGeneva 23Switzerland

Personalised recommendations