Advertisement

Leading soft theorem for multiple gravitini

  • Diksha Jain
  • Arnab RudraEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We compute leading soft theorem for multiple gravitini (and gravitons) in an arbitrary theory of supergravity with an arbitrary number of finite energy particles by extending Sen’s approach [1, 2] to fermionic symmetry. Our results are independent of the mass and the spin of the external particles. Our results are valid for any compactification of type II and Heterotic superstring theory. Our results are valid at all orders in perturbation theory for four and higher spacetime dimensions.

Keywords

Scattering Amplitudes Supergravity Models Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Soft theorems in superstring theory, JHEP 06 (2017) 113 [arXiv:1702.03934] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Sen, Subleading soft graviton theorem for loop amplitudes, JHEP 11 (2017) 123 [arXiv:1703.00024] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].
  4. [4]
    F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].
  5. [5]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].CrossRefzbMATHGoogle Scholar
  6. [6]
    S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    R. Jackiw, Low-energy theorems for massless bosons: photons and gravitons, Phys. Rev. 168 (1968) 1623 [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    J.S. Bell and R. Van Royen, On the low-burnett-kroll theorem for soft-photon emission, Nuovo Cim. A 60 (1969) 62 [INSPIRE].
  12. [12]
    S. Saito, Low-energy theorem for Compton scattering, Phys. Rev. 184 (1969) 1894 [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    V. Del Duca, High-energy Bremsstrahlung theorems for soft photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].
  14. [14]
    A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].CrossRefzbMATHGoogle Scholar
  16. [16]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinbergs soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].
  17. [17]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-dimensional supertranslations and Weinbergs soft graviton theorem, arXiv:1502.07644 [INSPIRE].
  19. [19]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  20. [20]
    D. Kapec, V. Lysov and A. Strominger, Asymptotic symmetries of massless QED in even dimensions, Adv. Theor. Math. Phys. 21 (2017) 1747 [arXiv:1412.2763] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Pate, A.-M. Raclariu and A. Strominger, Gravitational memory in higher dimensions, JHEP 06 (2018) 138 [arXiv:1712.01204] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].
  26. [26]
    S. He, Y.-t. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    A.J. Larkoski, Conformal invariance of the subleading soft theorem in gauge theory, Phys. Rev. D 90 (2014) 087701 [arXiv:1405.2346] [INSPIRE].
  28. [28]
    C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].
  29. [29]
    F. Cachazo and E.Y. Yuan, Are soft theorems renormalized?, arXiv:1405.3413 [INSPIRE].
  30. [30]
    N. Afkhami-Jeddi, Soft graviton theorem in arbitrary dimensions, arXiv:1405.3533 [INSPIRE].
  31. [31]
    B.U.W. Schwab, Subleading soft factor for string disk amplitudes, JHEP 08 (2014) 062 [arXiv:1406.4172] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorem for the graviton, dilaton and the Kalb-Ramond field in the bosonic string, JHEP 05 (2015) 137 [arXiv:1502.05258] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on soft theorems: trees, loops and strings, Phys. Rev. D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].
  34. [34]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].
  35. [35]
    A. Sabio Vera and M.A. Vazquez-Mozo, The double copy structure of soft gravitons, JHEP 03 (2015) 070 [arXiv:1412.3699] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Y.-J. Du, B. Feng, C.-H. Fu and Y. Wang, Note on soft graviton theorem by KLT relation, JHEP 11 (2014) 090 [arXiv:1408.4179] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
  39. [39]
    C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions, JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].
  41. [41]
    D. Bonocore et al., The method of regions and next-to-soft corrections in Drell-Yan production, Phys. Lett. B 742 (2015) 375 [arXiv:1410.6406] [INSPIRE].
  42. [42]
    B.U.W. Schwab, A note on soft factors for closed string scattering, JHEP 03 (2015) 140 [arXiv:1411.6661] [INSPIRE].
  43. [43]
    T. Klose et al., Double-soft limits of gluons and gravitons, JHEP 07 (2015) 135 [arXiv:1504.05558] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A.E. Lipstein, Soft theorems from conformal field theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Volovich, C. Wen and M. Zlotnikov, Double soft theorems in gauge and string theories, JHEP 07 (2015) 095 [arXiv:1504.05559] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    J. Rao and B. Feng, Note on identities inspired by new soft theorems, JHEP 04 (2016) 173 [arXiv:1604.00650] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  47. [47]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior for scalars and gluons from string theory, JHEP 12 (2015) 150 [arXiv:1507.00938] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  48. [48]
    M. Bianchi and A.L. Guerrieri, On the soft limit of open string disk amplitudes with massive states, JHEP 09 (2015) 164 [arXiv:1505.05854] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    A.L. Guerrieri, Soft behavior of string amplitudes with external massive states, Nuovo Cim. C 39 (2016) 221 [arXiv:1507.08829] [INSPIRE].
  50. [50]
    Y.-t. Huang and C. Wen, Soft theorems from anomalous symmetries, JHEP 12 (2015) 143 [arXiv:1509.07840] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  51. [51]
    S.D. Alston, D.C. Dunbar and W.B. Perkins, n-point amplitudes with a single negative-helicity graviton, Phys. Rev. D 92 (2015) 065024 [arXiv:1507.08882] [INSPIRE].
  52. [52]
    M. Bianchi and A.L. Guerrieri, On the soft limit of closed string amplitudes with massive states, Nucl. Phys. B 905 (2016) 188 [arXiv:1512.00803] [INSPIRE].
  53. [53]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorems from string theory, Fortsch. Phys. 64 (2016) 389 [arXiv:1511.04921] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Bianchi and A.L. Guerrieri, On the soft limit of tree-level string amplitudes, in the proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG14), July 12-18, Rome, Italy (2015), arXiv:1601.03457 [INSPIRE].
  55. [55]
    P. Di Vecchia, R. Marotta and M. Mojaza, Subsubleading soft theorems of gravitons and dilatons in the bosonic string, JHEP 06 (2016) 054 [arXiv:1604.03355] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    S. He, Z. Liu and J.-B. Wu, Scattering equations, twistor-string formulas and double-soft limits in four dimensions, JHEP 07 (2016) 060 [arXiv:1604.02834] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A.P. Saha, Double soft theorem for perturbative gravity, JHEP 09 (2016) 165 [arXiv:1607.02700] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton, JHEP 12 (2016) 020 [arXiv:1610.03481] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    C. Cheung et al., A periodic table of effective field theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  62. [62]
    A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    H. Elvang, C.R.T. Jones and S.G. Naculich, Soft photon and graviton theorems in effective field theory, Phys. Rev. Lett. 118 (2017) 231601 [arXiv:1611.07534] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    A.P. Saha, Double soft limit of the graviton amplitude from the Cachazo-He-Yuan formalism, Phys. Rev. D 96 (2017) 045002 [arXiv:1702.02350] [INSPIRE].
  65. [65]
    S. Chakrabarti et al., Subleading soft theorem for multiple soft gravitons, JHEP 12 (2017) 150 [arXiv:1707.06803] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    Y. Hamada and G. Shiu, Infinite set of soft theorems in gauge-gravity theories as Ward-Takahashi identities, Phys. Rev. Lett. 120 (2018) 201601 [arXiv:1801.05528] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    Z.-Z. Li, H.-H. Lin and S.-Q. Zhang, Infinite soft theorems from gauge symmetry, Phys. Rev. D 98 (2018) 045004 [arXiv:1802.03148] [INSPIRE].
  68. [68]
    A. Laddha and A. Sen, Sub-subleading soft graviton theorem in generic theories of quantum gravity, JHEP 10 (2017) 065 [arXiv:1706.00759] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  70. [70]
    S. Atul Bhatkar and B. Sahoo, Subleading soft theorem for arbitrary number of external soft photons and gravitons, JHEP 01 (2019) 153 [arXiv:1809.01675] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].
  72. [72]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].CrossRefzbMATHGoogle Scholar
  73. [73]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].
  75. [75]
    T.T. Dumitrescu, T. He, P. Mitra and A. Strominger, Infinite-dimensional fermionic symmetry in supersymmetric gauge theories, arXiv:1511.07429 [INSPIRE].
  76. [76]
    M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev. D 15 (1977) 996 [INSPIRE].
  77. [77]
    M.T. Grisaru and H.N. Pendleton, Soft spin 3/2 fermions require gravity and supersymmetry, Phys. Lett. B 67 (1977) 323.Google Scholar
  78. [78]
    M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [INSPIRE].
  79. [79]
    V. Lysov, Asymptotic fermionic symmetry from soft gravitino theorem, arXiv:1512.03015 [INSPIRE].
  80. [80]
    S.G. Avery and B.U.W. Schwab, Residual local supersymmetry and the soft gravitino, Phys. Rev. Lett. 116 (2016) 171601 [arXiv:1512.02657] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [INSPIRE].CrossRefzbMATHGoogle Scholar
  82. [82]
    D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared divergences in QED, revisited, Phys. Rev. D 96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].
  83. [83]
    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    S. Choi and R. Akhoury, BMS supertranslation symmetry implies Faddeev-Kulish amplitudes, JHEP 02 (2018) 171 [arXiv:1712.04551] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    J. Ware, R. Saotome and R. Akhoury, Construction of an asymptotic S matrix for perturbative quantum gravity, JHEP 10 (2013) 159 [arXiv:1308.6285] [INSPIRE].CrossRefGoogle Scholar
  86. [86]
    S. Choi, U. Kol and R. Akhoury, Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations, JHEP 01 (2018) 142 [arXiv:1708.05717] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  87. [87]
    A. Sen, Background independence of closed superstring field theory, JHEP 02 (2018) 155 [arXiv:1711.08468] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    S. Ferrara et al., Scalar multiplet coupled to supergravity, Phys. Rev. D 15 (1977) 1013 [INSPIRE].
  89. [89]
    C.K. Zachos, N = 2 supergravity theory with a gauged central charge, Phys. Lett. B 76 (1978) 329.Google Scholar
  90. [90]
    S. Pasterski, S.-H. Shao and A. Strominger, Flat space amplitudes and conformal symmetry of the celestial sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].
  91. [91]
    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].
  92. [92]
    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].
  93. [93]
    L. Donnay, A. Puhm and A. Strominger, Conformally soft photons and gravitons, JHEP 01 (2019) 184 [arXiv:1810.05219] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    S. Higuchi and H. Kawai, Universality of soft theorem from locality of soft vertex operators, Nucl. Phys. B 936 (2018) 400 [arXiv:1805.11079] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.SISSA International School for Advanced Studies and INFN — Sezione di TriesteTriesteItaly
  2. 2.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations