Advertisement

Off-shell N = 2 → N = 1 reduction in 4D conformal supergravity

  • Yusuke YamadaEmail author
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We discuss N = 2 → N = 1 reduction in four dimensional conformal supergravity. In particular, we keep the off-shell structure of supermultiplets (except hypermultiplets). As we will show, starting with (almost) off-shell conformal supergravity makes the procedure simpler than that from N = 2 Poincaré supergravity, which makes it easier to show the correspondence to the standard N = 1 conformal supergravity. We find that the N = 1 superconformal symmetry is simply realized by truncating the gravitino multiplet. We also discuss the consistency with the original N = 2 system and show the reduced N = 1 conformal supergravity action.

Keywords

Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].
  5. [5]
    S. Cecotti, L. Girardello and M. Porrati, Two into one wont go, Phys. Lett. 145B (1984) 61 [INSPIRE].
  6. [6]
    S. Cecotti, L. Girardello and M. Porrati, Constraints on partial superhiggs, Nucl. Phys. B 268 (1986) 295 [INSPIRE].
  7. [7]
    J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [INSPIRE].
  8. [8]
    J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].
  9. [9]
    J. Bagger and A. Galperin, Matter couplings in partially broken extended supersymmetry, Phys. Lett. B 336 (1994) 25 [hep-th/9406217] [INSPIRE].
  10. [10]
    I. Antoniadis, H. Partouche and T.R. Taylor, Spontaneous breaking of N = 2 global supersymmetry, Phys. Lett. B 372 (1996) 83 [hep-th/9512006] [INSPIRE].
  11. [11]
    S. Ferrara, L. Girardello and M. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in N = 2 supergravity, Phys. Lett. B 366 (1996) 155 [hep-th/9510074] [INSPIRE].
  12. [12]
    S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of N = 2 to N = 1 in rigid and local supersymmetric theories, Phys. Lett. B 376 (1996) 275 [hep-th/9512180] [INSPIRE].
  13. [13]
    P. Fré, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N = 2 → N = 1 local supersymmetry breaking with surviving compact gauge group, Nucl. Phys. B 493 (1997) 231 [hep-th/9607032] [INSPIRE].
  14. [14]
    J.R. David, E. Gava and K.S. Narain, Partial N = 2 → N = 1 supersymmetry breaking and gravity deformed chiral rings, JHEP 06 (2004) 041 [hep-th/0311086] [INSPIRE].
  15. [15]
    K. Fujiwara, H. Itoyama and M. Sakaguchi, Supersymmetric U(N) gauge model and partial breaking of N = 2 supersymmetry, Prog. Theor. Phys. 113 (2005) 429 [hep-th/0409060] [INSPIRE].
  16. [16]
    K. Fujiwara, H. Itoyama and M. Sakaguchi, Partial breaking of N = 2 supersymmetry and of gauge symmetry in the U(N) gauge model, Nucl. Phys. B 723 (2005) 33 [hep-th/0503113] [INSPIRE].
  17. [17]
    H. Itoyama and K. Maruyoshi, U(N ) gauged N = 2 supergravity and partial breaking of local N = 2 supersymmetry, Int. J. Mod. Phys. A 21 (2006) 6191 [hep-th/0603180] [INSPIRE].
  18. [18]
    K. Maruyoshi, Gauged N = 2 Supergravity and Partial Breaking of Extended Supersymmetry, Ph.D. Thesis, Osaka City U. (2006) [hep-th/0607047] [INSPIRE].
  19. [19]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].
  20. [20]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  21. [21]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Louis, P. Smyth and H. Triendl, The N = 1 Low-Energy Effective Action of Spontaneously Broken N = 2 Supergravities, JHEP 10 (2010) 017 [arXiv:1008.1214] [INSPIRE].
  23. [23]
    H. Abe, S. Aoki, S. Imai and Y. Sakamura, Interpolation of partial and full supersymmetry breakings in \( \mathcal{N}\mathrm{Unknown}\ \mathrm{character}\ \left(0\mathrm{x}\mathrm{F}700\right)\ \mathrm{from}\ "\mathrm{Euclid}\ \mathrm{Math}\ \mathrm{One}"\ \left(0\mathrm{x}3\mathrm{D}\right)=\in \) supergravity, arXiv:1901.05679 [INSPIRE].
  24. [24]
    L. Andrianopoli, R. D’Auria and S. Ferrara, Supersymmetry reduction of N extended supergravities in four-dimensions, JHEP 03 (2002) 025 [hep-th/0110277] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    L. Andrianopoli, R. D’Auria and S. Ferrara, Consistent reduction of N = 2 → N = 1 four-dimensional supergravity coupled to matter, Nucl. Phys. B 628 (2002) 387 [hep-th/0112192] [INSPIRE].
  26. [26]
    R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, N = 1 reductions of N = 2 supergravity in the presence of tensor multiplets, JHEP 03 (2005) 052 [hep-th/0502219] [INSPIRE].
  27. [27]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].
  28. [28]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 SupergravityMatter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].
  29. [29]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of Conformal Supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].
  30. [30]
    M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. 76B (1978) 54 [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    T. Kugo and S. Uehara, Conformal and Poincaré Tensor Calculi in N = 1 Supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].
  32. [32]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].
  33. [33]
    B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys. B 568 (2000) 475 [hep-th/9909228] [INSPIRE].
  34. [34]
    D.Z. Freedman, D. Roest and A. van Proeyen, A Geometric Formulation of Supersymmetry, Fortsch. Phys. 65 (2017) 1600106 [arXiv:1609.07362] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    D.Z. Freedman, D. Roest and A. Van Proeyen, Off-shell Poincaré Supergravity, JHEP 02 (2017) 102 [arXiv:1701.05216] [INSPIRE].CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations