Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production

  • Alessandro BacchettaEmail author
  • Filippo Delcarro
  • Cristian Pisano
  • Marco Radici
  • Andrea Signori
Open Access
Regular Article - Theoretical Physics


We present an extraction of unpolarized partonic transverse momentum distributions (TMDs) from a simultaneous fit of available data measured in semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson production. To connect data at different scales, we use TMD evolution at next-to-leading logarithmic accuracy. The analysis is restricted to the low-transverse-momentum region, with no matching to fixed-order calculations at high transverse momentum. We introduce specific choices to deal with TMD evolution at low scales, of the order of 1 GeV2. This could be considered as a first attempt at a global fit of TMDs.


Deep Inelastic Scattering (Phenomenology) QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  2. [2]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press (2011) [] [INSPIRE].
  3. [3]
    R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon. B 46 (2015) 2501 [arXiv:1507.05267] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.C. Rogers, An Overview of Transverse Momentum Dependent Factorization and Evolution, Eur. Phys. J. A 52 (2016) 153 [arXiv:1509.04766] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Bacchetta, Where do we stand with a 3-D picture of the proton?, Eur. Phys. J. A 52 (2016) 163 [INSPIRE].
  6. [6]
    M. Radici, Imaging the proton, AIP Conf. Proc. 1735 (2016) 020003 [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    P.J. Mulders and R.D. Tangerman, The Complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B 461 (1996) 197 [Erratum ibid. B 484 (1997)538] [hep-ph/9510301] [INSPIRE].
  8. [8]
    A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders and M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].
  9. [9]
    D. Boer and P.J. Mulders, Time reversal odd distribution functions in leptoproduction, Phys. Rev. D 57 (1998) 5780 [hep-ph/9711485] [INSPIRE].
  10. [10]
    A. Bacchetta and P.J. Mulders, Deep inelastic leptoproduction of spin-one hadrons, Phys. Rev. D 62 (2000) 114004 [hep-ph/0007120] [INSPIRE].
  11. [11]
    P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].
  12. [12]
    D. Boer, S. Cotogno, T. van Daal, P.J. Mulders, A. Signori and Y.-J. Zhou, Gluon and Wilson loop TMDs for hadrons of spin ≤ 1, JHEP 10 (2016) 013 [arXiv:1607.01654] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Bacchetta and M. Radici, Constraining quark angular momentum through semi-inclusive measurements, Phys. Rev. Lett. 107 (2011) 212001 [arXiv:1107.5755] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Anselmino, M. Boglione and S. Melis, A Strategy towards the extraction of the Sivers function with TMD evolution, Phys. Rev. D 86 (2012) 014028 [arXiv:1204.1239] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M.G. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, QCD Evolution of the Sivers Asymmetry, Phys. Rev. D 89 (2014) 074013 [arXiv:1401.5078] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Anselmino, M. Boglione, U. D’Alesio, F. Murgia and A. Prokudin, Study of the sign change of the Sivers function from STAR Collaboration W/Z production data, JHEP 04 (2017) 046 [arXiv:1612.06413] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Z. Lu and I. Schmidt, Updating Boer-Mulders functions from unpolarized pd and pp Drell-Yan data, Phys. Rev. D 81 (2010) 034023 [arXiv:0912.2031] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V. Barone, M. Boglione, J.O. Gonzalez Hernandez and S. Melis, Phenomenological analysis of azimuthal asymmetries in unpolarized semi-inclusive deep inelastic scattering, Phys. Rev. D 91 (2015) 074019 [arXiv:1502.04214] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Lefky and A. Prokudin, Extraction of the distribution function h 1T from experimental data, Phys. Rev. D 91 (2015) 034010 [arXiv:1411.0580] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Simultaneous extraction of transversity and Collins functions from new SIDIS and e + e data, Phys. Rev. D 87 (2013) 094019 [arXiv:1303.3822] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution, Phys. Rev. D 93 (2016) 014009 [arXiv:1505.05589] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Signori, Flavor and Evolution Effects in TMD Phenomenology: Manifestation of Hadron Structure in High-Energy Scattering Processes, Ph.D. Thesis, Vrije U., Amsterdam (2016), [INSPIRE].
  23. [23]
    A. Signori, A. Bacchetta, M. Radici and G. Schnell, Investigations into the flavor dependence of partonic transverse momentum, JHEP 11 (2013) 194 [arXiv:1309.3507] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Bacchetta, M.G. Echevarria, P.J.G. Mulders, M. Radici and A. Signori, Effects of TMD evolution and partonic flavor on e + e annihilation into hadrons, JHEP 11 (2015) 076 [arXiv:1508.00402] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato and B. Wang, Relating Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized Formalism, Phys. Rev. D 94 (2016) 034014 [arXiv:1605.00671] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  27. [27]
    A. Bacchetta, D. Boer, M. Diehl and P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum, JHEP 08 (2008) 023 [arXiv:0803.0227] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ZEUS collaboration, S. Chekanov et al., Measurement of the Longitudinal Proton Structure Function at HERA, Phys. Lett. B 682 (2009) 8 [arXiv:0904.1092] [INSPIRE].
  29. [29]
    H1 collaboration, V. Andreev et al., Measurement of inclusive ep cross sections at high Q 2 at \( \sqrt{s}=225 \) and 252 GeV and of the longitudinal proton structure function F L at HERA, Eur. Phys. J. C 74 (2014) 2814 [arXiv:1312.4821] [INSPIRE].
  30. [30]
    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  31. [31]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    X.-d. Ji and F. Yuan, Parton distributions in light cone gauge: Where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].
  33. [33]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  34. [34]
    S.M. Aybat and T.C. Rogers, TMD Parton Distribution and Fragmentation Functions with QCD Evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q T And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.G. Echevarria, A. Idilbi, A. Schäfer and I. Scimemi, Model-Independent Evolution of Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL, Eur. Phys. J. C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.C. Collins and T.C. Rogers, Equality of Two Definitions for Transverse Momentum Dependent Parton Distribution Functions, Phys. Rev. D 87 (2013) 034018 [arXiv:1210.2100] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H.H. Matevosyan, W. Bentz, I.C. Cloet and A.W. Thomas, Transverse Momentum Dependent Fragmentation and Quark Distribution Functions from the NJL-jet Model, Phys. Rev. D 85 (2012) 014021 [arXiv:1111.1740] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Boglione, J. Collins, L. Gamberg, J.O. Gonzalez-Hernandez, T.C. Rogers and N. Sato, Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering, Phys. Lett. B 766 (2017) 245 [arXiv:1611.10329] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E. Moffat, W. Melnitchouk, T.C. Rogers and N. Sato, What are the low-Q and large-x boundaries of collinear QCD factorization theorems?, Phys. Rev. D 95 (2017) 096008 [arXiv:1702.03955] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D. Boer and W. Vogelsang, Drell-Yan lepton angular distribution at small transverse momentum, Phys. Rev. D 74 (2006) 014004 [hep-ph/0604177] [INSPIRE].
  43. [43]
    S. Arnold, A. Metz and M. Schlegel, Dilepton production from polarized hadron hadron collisions, Phys. Rev. D 79 (2009) 034005 [arXiv:0809.2262] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  45. [45]
    M. Lambertsen and W. Vogelsang, Drell-Yan lepton angular distributions in perturbative QCD, Phys. Rev. D 93 (2016) 114013 [arXiv:1605.02625] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Parisi and R. Petronzio, Small Transverse Momentum Distributions in Hard Processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Altarelli, R.K. Ellis, M. Greco and G. Martinelli, Vector Boson Production at Colliders: A Theoretical Reappraisal, Nucl. Phys. B 246 (1984) 12 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Boer and W.J. den Dunnen, TMD evolution and the Higgs transverse momentum distribution, Nucl. Phys. B 886 (2014) 421 [arXiv:1404.6753] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    E. Laenen, G.F. Sterman and W. Vogelsang, Higher order QCD corrections in prompt photon production, Phys. Rev. Lett. 84 (2000) 4296 [hep-ph/0002078] [INSPIRE].
  51. [51]
    J.-w. Qiu and X.-f. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan Q T distributions, Phys. Rev. D 63 (2001) 114011 [hep-ph/0012348] [INSPIRE].
  52. [52]
    C.T.H. Davies and W.J. Stirling, Nonleading Corrections to the Drell-Yan Cross-Section at Small Transverse Momentum, Nucl. Phys. B 244 (1984) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].
  54. [54]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
  55. [55]
    P.M. Nadolsky, D.R. Stump and C.P. Yuan, Semiinclusive hadron production at HERA: The effect of QCD gluon resummation, Phys. Rev. D 61 (2000) 014003 [Erratum ibid. D 64 (2001) 059903] [hep-ph/9906280] [INSPIRE].
  56. [56]
    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].
  57. [57]
    A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].
  58. [58]
    C.A. Aidala, B. Field, L.P. Gamberg and T.C. Rogers, Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q, Phys. Rev. D 89 (2014) 094002 [arXiv:1401.2654] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Collins and T. Rogers, Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel, Phys. Rev. D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].ADSGoogle Scholar
  60. [60]
    I. Scimemi and A. Vladimirov, Power corrections and renormalons in Transverse Momentum Distributions, JHEP 03 (2017) 002 [arXiv:1609.06047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in q T spectra of Drell-Yan and Z-boson production, JHEP 11 (2014) 098 [arXiv:1407.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Gluck, P. Jimenez-Delgado and E. Reya, Dynamical parton distributions of the nucleon and very small-x physics, Eur. Phys. J. C 53 (2008) 355 [arXiv:0709.0614] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto and M. Stratmann, Parton-to-Pion Fragmentation Reloaded, Phys. Rev. D 91 (2015) 014035 [arXiv:1410.6027] [INSPIRE].ADSGoogle Scholar
  65. [65]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. D 75 (2007) 114010 [hep-ph/0703242] [INSPIRE].
  66. [66]
    D. de Florian, M. Epele, R.J. Hernandez-Pinto, R. Sassot and M. Stratmann, Parton-to-Kaon Fragmentation Revisited, Phys. Rev. D 95 (2017) 094019 [arXiv:1702.06353] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Bacchetta, L.P. Gamberg, G.R. Goldstein and A. Mukherjee, Collins fragmentation function for pions and kaons in a spectator model, Phys. Lett. B 659 (2008) 234 [arXiv:0707.3372] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a light-cone quark model, Phys. Rev. D 78 (2008) 034025 [arXiv:0806.2298] [INSPIRE].ADSGoogle Scholar
  69. [69]
    H. Avakian, A.V. Efremov, P. Schweitzer and F. Yuan, The transverse momentum dependent distribution functions in the bag model, Phys. Rev. D 81 (2010) 074035 [arXiv:1001.5467] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A. Bacchetta, M. Radici, F. Conti and M. Guagnelli, Weighted azimuthal asymmetries in a diquark spectator model, Eur. Phys. J. A 45 (2010) 373 [arXiv:1003.1328] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Burkardt and B. Pasquini, Modelling the nucleon structure, Eur. Phys. J. A 52 (2016) 161 [arXiv:1510.02567] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Bacchetta, R. Kundu, A. Metz and P.J. Mulders, Estimate of the Collins fragmentation function in a chiral invariant approach, Phys. Rev. D 65 (2002) 094021 [hep-ph/0201091] [INSPIRE].
  73. [73]
    P. Schweitzer, M. Strikman and C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking, JHEP 01 (2013) 163 [arXiv:1210.1267] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    HERMES collaboration, A. Airapetian et al., Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Rev. D 87 (2013) 074029 [arXiv:1212.5407] [INSPIRE].
  75. [75]
    COMPASS collaboration, C. Adolph et al., Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/c, Eur. Phys. J. C 73 (2013) 2531 [Erratum ibid. C 75 (2015) 94] [arXiv:1305.7317] [INSPIRE].
  76. [76]
    M. Anselmino, M. Boglione, J.O. Gonzalez Hernandez, S. Melis and A. Prokudin, Unpolarised Transverse Momentum Dependent Distribution and Fragmentation Functions from SIDIS Multiplicities, JHEP 04 (2014) 005 [arXiv:1312.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    F. Landry, R. Brock, G. Ladinsky and C.P. Yuan, New fits for the nonperturbative parameters in the CSS resummation formalism, Phys. Rev. D 63 (2001) 013004 [hep-ph/9905391] [INSPIRE].
  78. [78]
    U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in q T spectra of Drell-Yan and Z-boson production, JHEP 11 (2014) 098 [arXiv:1407.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A.S. Ito et al., Measurement of the Continuum of Dimuons Produced in High-Energy Proton-Nucleus Collisions, Phys. Rev. D 23 (1981) 604 [INSPIRE].ADSGoogle Scholar
  80. [80]
    G. Moreno et al., Dimuon production in proton-copper collisions at \( \sqrt{s}=38.8 \) -GeV, Phys. Rev. D 43 (1991) 2815 [INSPIRE].
  81. [81]
    CDF collaboration, T. Affolder et al., The transverse momentum and total cross section of e+e− pairs in the Z boson region from \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 84 (2000) 845 [hep-ex/0001021] [INSPIRE].
  82. [82]
    D0 collaboration, B. Abbott et al., Measurement of the inclusive differential cross section for Z bosons as a function of transverse momentum in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 61 (2000) 032004 [hep-ex/9907009] [INSPIRE].
  83. [83]
    CDF collaboration, T. Aaltonen et al., Transverse momentum cross section of e + e pairs in the Z-boson region from \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 86 (2012) 052010 [arXiv:1207.7138] [INSPIRE].
  84. [84]
    D0 collaboration, V.M. Abazov et al., Measurement of the shape of the boson transverse momentum distribution in \( p\overline{p}\to Z/{\upgamma}^{\ast}\to {e}^{+}{e}^{-}+X \) events produced at \( \sqrt{s}=1.96 \)-TeV, Phys. Rev. Lett. 100 (2008) 102002 [arXiv:0712.0803] [INSPIRE].
  85. [85]
    CDF collaboration, A. Abulencia et al., Measurements of inclusive W and Z cross sections in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \)-TeV, J. Phys. G 34 (2007) 2457 [hep-ex/0508029] [INSPIRE].
  86. [86]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    A. Bacchetta, A. Courtoy and M. Radici, First extraction of valence transversities in a collinear framework, JHEP 03 (2013) 119 [arXiv:1212.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Radici, A. Courtoy, A. Bacchetta and M. Guagnelli, Improved extraction of valence transversity distributions from inclusive dihadron production, JHEP 05 (2015) 123 [arXiv:1503.03495] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE].
  90. [90]
    NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
  91. [91]
    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  92. [92]
    M. Epele, R. Llubaroff, R. Sassot and M. Stratmann, Uncertainties in pion and kaon fragmentation functions, Phys. Rev. D 86 (2012) 074028 [arXiv:1209.3240] [INSPIRE].ADSGoogle Scholar
  93. [93]
    F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    H1 collaboration, S. Aid et al., Transverse energy and forward jet production in the low x regime at HERA, Phys. Lett. B 356 (1995) 118 [hep-ex/9506012] [INSPIRE].
  95. [95]
    G.A. Ladinsky and C.P. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev. D 50 (1994) R4239 [hep-ph/9311341] [INSPIRE].
  96. [96]
    P. Sun, J. Isaacson, C.P. Yuan and F. Yuan, Universal Non-perturbative Functions for SIDIS and Drell-Yan Processes, arXiv:1406.3073 [INSPIRE].
  97. [97]
    P. Schweitzer, T. Teckentrup and A. Metz, Intrinsic transverse parton momenta in deeply inelastic reactions, Phys. Rev. D 81 (2010) 094019 [arXiv:1003.2190] [INSPIRE].ADSGoogle Scholar
  98. [98]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  99. [99]
    J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].ADSGoogle Scholar
  100. [100]
    F. Hautmann et al., TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions, Eur. Phys. J. C 74 (2014) 3220 [arXiv:1408.3015] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J. Dudek et al., Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab, Eur. Phys. J. A 48 (2012) 187 [arXiv:1208.1244] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    S.J. Brodsky, F. Fleuret, C. Hadjidakis and J.P. Lansberg, Physics Opportunities of a Fixed-Target Experiment using the LHC Beams, Phys. Rept. 522 (2013) 239 [arXiv:1202.6585] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution, JHEP 07 (2015) 158 [arXiv:1502.05354] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons, Phys. Rev. Lett. 106 (2011) 132001 [arXiv:1011.4225] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    C. Pisano, D. Boer, S.J. Brodsky, M.G.A. Buffing and P.J. Mulders, Linear polarization of gluons and photons in unpolarized collider experiments, JHEP 10 (2013) 024 [arXiv:1307.3417] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    J.-W. Qiu, M. Schlegel and W. Vogelsang, Probing Gluonic Spin-Orbit Correlations in Photon Pair Production, Phys. Rev. Lett. 107 (2011) 062001 [arXiv:1103.3861] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    D. Boer and C. Pisano, Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER, Phys. Rev. D 86 (2012) 094007 [arXiv:1208.3642] [INSPIRE].ADSGoogle Scholar
  108. [108]
    W.J. den Dunnen, J.P. Lansberg, C. Pisano and M. Schlegel, Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC, Phys. Rev. Lett. 112 (2014)212001 [arXiv:1401.7611] [INSPIRE].
  109. [109]
    A. Signori, Gluon TMDs in quarkonium production, Few Body Syst. 57 (2016) 651 [arXiv:1602.03405] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    J.-P. Lansberg, C. Pisano and M. Schlegel, Associated production of a dilepton and a Y(J/ψ) at the LHC as a probe of gluon transverse momentum dependent distributions, Nucl. Phys. B 920 (2017) 192 [arXiv:1702.00305] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  111. [111]
    E.C. Aschenauer, U. D’Alesio and F. Murgia, TMDs and SSAs in hadronic interactions, Eur. Phys. J. A 52 (2016) 156 [arXiv:1512.05379] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    M. Boglione and A. Prokudin, Phenomenology of transverse spin: past, present and future, Eur. Phys. J. A 52 (2016) 154 [arXiv:1511.06924] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di PaviaPaviaItaly
  2. 2.INFN Sezione di PaviaPaviaItaly
  3. 3.Theory Center, Thomas Jefferson National Accelerator FacilityNewport NewsU.S.A.

Personalised recommendations