Relaxion fluctuations (self-stopping relaxion) and overview of relaxion stopping mechanisms

An Erratum to this article was published on 05 January 2021

This article has been updated

Abstract

In implementations of the electroweak scale cosmological relaxation mechanism proposed so far, the effect of the quantum fluctuations of the homogeneous relaxion field has been ignored. We show that they can grow during the classical cosmological evolution of the relaxion field passing through its many potential barriers. The resulting production of relaxion particles can act as an efficient stopping mechanism for the relaxion. We revisit the original relaxion proposal and determine under which conditions inflation may no longer be needed as a source of friction. We review alternative stopping mechanisms and determine in detail the allowed parameter space for each of them (whether happening before, during and after inflation), also considering and severely constraining the case of friction from electroweak gauge boson production in models with large and Higgs-independent barriers.

A preprint version of the article is available at ArXiv.

Change history

  • 05 January 2021

    We correct a minor point in section 3.2 of “Relaxion Fluctuations (Self-stopping Relaxion) and Overview of Relaxion Stopping Mechanisms”, <Emphasis Type="Italic">JHEP</Emphasis> <Emphasis Type="Bold">05</Emphasis> (2020) 080. Furthermore, we clarify the origin of equation (4.25). Finally, we add some plots that are of interest.

References

  1. [1]

    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    J.R. Espinosa et al., Cosmological Higgs-a xion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP 12 (2016) 101 [arXiv: 1607.01786] [INSPIRE].

  4. [4]

    N. Fonseca, E. Morgante and G. Servant, Higgs relaxation after inflation, JHEP 10 (2018) 020 [arXiv:1805.04543] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    N. Fonseca, E. Morgante, R. Sato and G. Servant, Axion fragmentation, JHEP 04 (2020) 010 [arXiv:1911.08472] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    E. Hardy, Electroweak relaxation from finite temperature, JHEP 11 (2015) 077 [arXiv: 1507 .07525] [INSPIRE].

  7. [7]

    M. Ibe, Y. Shoji and M. Suzuki, Fast-rolling relaxion, JHEP 11 (2019) 140 [arXiv: 1904.02545] [INSPIRE].

  8. [8]

    S.-J. Wang, Paper-boat relaxion, Phys. Rev. D 99 (2019) 095026 [arXiv: 1811. 06520] [INSPIRE].

  9. [9]

    K. Kadota, U. Min, M. Son and F. Ye, Cosmological relaxation from dark fermion production, JHEP 02 (2020) 135 [arXiv: 1909. 07706] [INSPIRE].

  10. [10]

    N. McLachlan, Theory and applications of Mathieu functions, Clarendon Press, Oxford U.K. (1947).

    MATH  Google Scholar 

  11. [11]

    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

  12. [12]

    M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    N. Fonseca and E. Morgante, Relaxion dark matter, Phys. Rev. D 100 (2019) 055010 [arXiv:1809.04534] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    T. Flacke et al., Phenomenology of relaxion-Higgs mixing, JHEP 06 (2017) 050 [arXiv:1610.02025] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].

  17. [17]

    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev. D 95 (2017) 075008 [arXiv:1611.08569] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    A. Banerjee, H. Kim and G. Perez, Coherent relaxion dark matter, Phys. Rev. D 100 (2019) 115026 [arXiv:1810.01889] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    S.A. Abel, R.S. Gupta and J. Scholtz, Out-of-the-box baryogenesis during relaxation, Phys. Rev. D 100 (2019) 015034 [arXiv:1810.05153] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    T. Kobayashi, O. Seto, T. Shimomura and Y. Urakawa, Relaxion window, Mod. Phys. Lett. A 32 (2017) 1750142 [arXiv:1605.06908] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    K. Choi and S.H. Im, Constraints on relaxion windows, JHEP 12 (2016) 093 [arXiv:1610.00680] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    H. Beauchesne, E. Bertuzzo and G. Grilli di Cortona, Constraints on the relaxion mechanism with strongly interacting vector-fermions, JHEP 08 (2017) 093 [arXiv:1705.06325] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    C. Frugiuele, E. Fuchs, G. Perez and M. Schlaffer, Relaxion and light (pseudo)scalars at the HL-LHC and lepton colliders, JHEP 10 (2018) 151 [arXiv:1807.10842] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    T. Konstandin and G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M. Bauer, M. Neubert and A. Thamm, Collider probes of axion-like particles, JHEP 12 (2017) 044 [arXiv:1708.00443] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    N. Craig, A. Hook and S. Kasko, The photophobic ALP, JHEP 09 (2018) 028 [arXiv:1805.06538] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    M. Bauer, M. Heiles, M. Neubert and A. Thamm, Axion-like particles at future colliders, Eur. Phys. J. C 79 (2019) 74 [arXiv:1808.10323] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    M.L. Bellac, Thermal field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).

    Google Scholar 

  30. [30]

    W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of relaxed inflation, JHEP 02 (2018) 084 [arXiv:1706.03072] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    M. Son, F. Ye and T. You, Leptogenesis in cosmological relaxation with particle production, Phys. Rev. D 99 (2019) 095016 [arXiv:1804.06599] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    V. Domcke and K. Mukaida, Gauge field and fermion production during axion inflation, JCAP 11 (2018) 020 [arXiv:1806.08769] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    N. Bar, K. Blum and G. D’amico, Is there a supernova bound on axions?, arXiv:1907.05020 [INSPIRE].

  34. [34]

    J. Berges, A. Chatrchyan and J. Jaeckel, Foamy dark matter from monodromies, JCAP 08 (2019) 020 [arXiv:1903.03116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrico Morgante.

Additional information

ArXiv ePrint: 1911.08473

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fonseca, N., Morgante, E., Sato, R. et al. Relaxion fluctuations (self-stopping relaxion) and overview of relaxion stopping mechanisms. J. High Energ. Phys. 2020, 80 (2020). https://doi.org/10.1007/JHEP05(2020)080

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM